001     111955
005     20200702121632.0
024 7 _ |a 10.1029/2011WR011062
|2 DOI
024 7 _ |a WOS:000306000600001
|2 WOS
024 7 _ |a 2128/17057
|2 Handle
037 _ _ |a PreJuSER-111955
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Limnology
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Erdal, D.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Estimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction
260 _ _ |a Washington, DC
|b AGU
|c 2012
300 _ _ |a W06530
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Water Resources Research
|x 0043-1397
|0 5958
|v 48
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 16.11.2012
520 _ _ |a Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Neuweiler, I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Huisman, J.A.
|b 2
|u FZJ
|0 P:(DE-Juel1)129472
773 _ _ |0 PERI:(DE-600)2029553-4
|a 10.1029/2011WR011062
|g Vol. 48, p. W06530
|p W06530
|q 48|t Water resources research
|v 48
|x 0043-1397
|y 2012
856 7 _ |u http://dx.doi.org/10.1029/2011WR011062
856 4 _ |u https://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/111955/files/Erdal_et_al-2012-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:111955
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-259H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k IBG-3
|l Agrosphäre
|g IBG
|0 I:(DE-Juel1)IBG-3-20101118
|x 0
970 _ _ |a VDB:(DE-Juel1)140601
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21