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[1] Estimates of effective parameters for unsaturated flow models are typically based on
observations taken on length scales smaller than the modeling scale. This complicates
parameter estimation for heterogeneous soil structures. In this paper we attempt to account
for soil structure not present in the flow model by using so-called external error models,
which correct for bias in the likelihood function of a parameter estimation algorithm. The
performance of external error models are investigated using data from three virtual reality
experiments and one real world experiment. All experiments are multistep outflow and
inflow experiments in columns packed with two sand types with different structures. First,
effective parameters for equivalent homogeneous models for the different columns were
estimated using soil moisture measurements taken at a few locations. This resulted in
parameters that had a low predictive power for the averaged states of the soil moisture if the
measurements did not adequately capture a representative elementary volume of the
heterogeneous soil column. Second, parameter estimation was performed using error
models that attempted to correct for bias introduced by soil structure not taken into account
in the first estimation. Three different error models that required different amounts of prior
knowledge about the heterogeneous structure were considered. The results showed that the
introduction of an error model can help to obtain effective parameters with more predictive
power with respect to the average soil water content in the system. This was especially true
when the dynamic behavior of the flow process was analyzed.
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1. Introduction
[2] Modeling of water fluxes in the unsaturated zone is

important for quantifying soil moisture movement between
the surface and groundwater. This modeling is intrinsically
difficult because the processes are highly nonlinear and soil
structures can vary from millimeters to kilometers in size
and can rarely be fully resolved. Animals and plants have a
large impact on the topsoil, processes such as hysteresis
and macropore transport may not be included in the model,
measurement devices have errors and typically there are
discrepancies between observation scale and modeling
scale. Despite all these potential sources of errors, today we
have advanced models that are assumed to adequately rep-
resent water flow in the unsaturated zone.

[3] A crucial point in modeling is to decide to what level
the details of the system need to be resolved. A high level of
detail may provide a better representation of reality, but it
requires more data, system knowledge, and computational

power. Simpler models, on the other hand, require less
details, are faster to run, and easier to understand, but may
not accurately reproduce the system of interest. A decision
on the appropriate level of detail depends on the modeling
goal and the available data. Ideally, data and model simula-
tions should be on the same scale, and the model should be
able to represent the relevant processes. In modeling of the
unsaturated zone for large scale systems, this is, however,
rarely the case and the scale differences between observa-
tions and models can be orders of magnitude, as demon-
strated for example by Vereecken et al. [2007]. To resolve
differences in scale and to accurately describe spatially dis-
tributed processes of soil moisture flow and states, models
need to be upscaled.

[4] In their review of upscaling methods, Vereecken
et al. [2007] distinguished two ways of upscaling. The first
way uses small scale spatial information to derive effective
equations and/or effective parameters for the large scale
model. Examples of such approaches are the use of stochas-
tic theory [see, for example, Vereecken et al., 2007; Zhang,
2002] and the scaleway approach of Vogel and Roth
[2003]. The second way is to assume that the model equa-
tions can represent the effective behavior of the system and
to estimate effective parameters using inverse modeling.
Standard models for water flow in the unsaturated zone are
often based on the Richards equation, also for larger scales.
Although inverse methods to estimate effective parameters
are well accepted, the assumption that such models can
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represent the effective behavior is not always physically
justified [e.g., Vereecken et al., 2007]. For this and several
other reasons, the estimation of effective parameters is
notoriously difficult in the unsaturated zone, as evidenced
by the studies of Papafotiou et al. [2008], Mertens et al.
[2005], and Kumar et al. [2010] that all showed differences
between parameters estimated for the same system at dif-
ferent scales.

[5] A common approach to estimate hydraulic parame-
ters of small soil columns is to use one- or multistep out-
flow experiments, in which a saturated soil sample is
drained by (stepwise) lowering of the water pressure at the
bottom of the sample [e.g., Bayer et al., 2005; Laloy et al.,
2010a; Schelle et al., 2010; Valiantzas and Londra, 2008;
Vasin et al., 2008; Zurmühl and Durner, 1998]. The ability
to obtain representative hydraulic parameters for such an
experiment depends, naturally, on the level of complexity
of the system [Laloy et al., 2010a; Vasin et al., 2008], the
type of model used [Laloy et al., 2010a; Zurmühl and
Durner, 1998], but also to a large extent on what system
states the model seeks to reproduce. For example, Bayer
et al. [2005], Durner et al. [2008], and Laloy et al. [2010a]
all found poor agreement between measured and modeled
internal water distribution, even though the averaged state
as determined by the flow in and out of the system was well
described. The difficulties of estimating effective hydraulic
parameters have also been pointed out by Vereecken et al.
[2008], who reviewed problems with estimating hydraulic
properties from soil moisture data and by Schelle et al.
[2010], who showed that it is particularly difficult to predict
the soil moisture regime outside the calibration period used
to estimate the effective parameters.

[6] All papers discussed in the previous paragraph ask
the question if, or to what extent, it is possible to find effec-
tive model parameters that reproduce the observations well.
If one believes that representative effective parameters
exist, it remains a challenging task to find them. Typically,
an optimization algorithm is used to search the parameter
space and to find the best possible parameter combination
that minimizes the difference between observations and
model predictions. A major problem in inverse modeling
applications that estimate hydraulic parameters of the unsatu-
rated zone is the long run time of a single flow model evalua-
tion, which restricts our ability to adequately explore the
parameter space. This, in turn, can lead to an additional uncer-
tainty in the resulting parameter estimates. With increasing
computational power, methods for automatic model parameter
estimation have become increasingly popular for estimating
parameters within an acceptable number of model evalua-
tions. Apart from estimating the best set of parameters for a
particular problem, some methods also assess model parame-
ter uncertainty. Examples of such methods are Markov chain
Monte Carlo (MCMC) methods [e.g., Gelman et al., 2004;
Vrugt et al., 2008], informal Bayesian approaches using gen-
eralized likelihood functions [e.g., Beven and Freer, 2001],
and multiobjective parameter estimation approaches that
search for an entire set of solutions that are all optimal in the
sense that an improvement in one objective results in a deteri-
oration of another objective [e.g., Vrugt et al., 2003].

[7] An important decision in setting up an inverse mod-
eling problem is the definition of a likelihood function
because this automatically entails assumptions about the

underlying causes for the difference between observations
and model. In the theory of using a model, Kennedy and
O’Hagan [2001] discussed six groups of errors that might
cause deviations between models and observations: param-
eter uncertainty, model inadequacy, residual variability,
parametric variability, measurement error, and code uncer-
tainty. Of these errors, the measurement error is the most
commonly treated. It is often assumed that it can be treated
as uncorrelated noise that follows a Gaussian distribution
with zero expectation (i.e., white noise), which allows
treatment with well-established statistical methods. The
uncertainty resulting from a possibly incomplete search of
the parameter space, and hence the risk of only finding a
local optimum, is in this view a code uncertainty. In unsatu-
rated zone modeling, it is common that certain structures of
the soil or certain processes are not well represented, which
makes the model an imperfect model of the real world.
This is referred to as model inadequacy. Due to the often
strong correlation in time and space, it is inappropriate to
describe these two error sources as uncorrelated Gaussian
noise. Therefore, it is common practice to ignore errors due
to model inadequacy and code uncertainty, despite the fact
that these errors can be orders of magnitude larger than
measurement errors [Doherty and Welter, 2010].

[8] An alternative approach to deal with errors in model-
ing is to include external error models that correct for dis-
crepancies between observations and modeling predictions.
Examples of such approaches are the use of autoregressive
models and external adjustments of model forcing terms
used by Kavetski et al. [2006], Vrugt et al. [2008], and
Reichert and Meileitner [2009]. Recently, a formal Bayes-
ian approach was proposed that uses a likelihood function
that can take into account skewness, heteroscedasticity, and
correlation of the residuals [Schoups and Vrugt, 2010].
This method was successfully tested for a hydrological test
case. Depending on the complexity of a problem and the
availability of data, different problems might require differ-
ent error treatments. In this context, Doherty and Welter
[2010] pointed out that a universal procedure to deal with
modeling errors associated with imperfect models does not
exist.

[9] In this paper we aim to investigate how parameters
can be estimated for a model that is known to be imperfect
because it does not fully resolve soil structure. The motiva-
tion to address this question is that measurements are regu-
larly made on a much smaller scale than the modeling
scale. For example, effective hydraulic parameters for large
scale models describing water flow in the unsaturated zone
are commonly estimated from water content observations
made with TDR probes on a centimeter scale. We follow
the general idea of introducing an error model to the param-
eter estimation process such as described by Carter [2004].
We test the approach by using spatially averaged saturation
measurements taken during multistep outflow experiments
in lab-scale heterogeneous sand samples by Vasin et al.
[2008]. The available data were obtained using neutron ra-
diography, neutron tomography, and outflow measurements.
We would like to stress here that these data are used for il-
lustrative purposes, but that the presented ideas are by no
means limited to this type of experiment. In fact, our results
are not meant to improve multistep outflow experiments,
but instead they are intended for use with a wide range of

W06530 ERDAL ET AL.: PARAMETER ESTIMATION USING ERROR MODELS W06530

2 of 19



hydrological flow problems, where typical applications
would be very different from this small scale.

[10] The remainder of the paper is structured as follows.
First, the setup of the experiment of Vasin et al. [2008] and
a virtual reality experiment used for initial tests are explained
in section 2. Section 3 presents a selection of parameter
estimation results using MCMC simulation to illustrate the
problem of estimating effective parameters for heterogene-
ous soils and the need for further investigation. In section
4, three external error models are introduced and tested as a
way to improve model performance by accounting for soil
structure outside of the flow model. Finally, conclusions
are drawn in section 5.

2. Methods
2.1. Data and Measurements

[11] Two sources of data are used in this paper: data
from a real multistep outflow (MSO) experiment (from
here on referred to as RE) performed by Vasin et al.
[2008], and data from simulated virtual reality drainage
experiments (referred to as VR) based on the same concept
as the real experiment. The experiment of Vasin et al.
[2008] used a 10 � 10 � 20 cm3 column for the MSO
experiment. Neutron tomography was used to obtain
the three-dimensional (3-D) water content distribution at
hydrostatic equilibrium and radiography was used to get
two-dimensional (2-D) (horizontally averaged) saturation
distributions under dynamic flow conditions. Outflow meas-
urements provided information about the total water mass
balance. The column was packed heterogeneously with cubes
of two different sand types with particle distributions of
0.08–0.2 and 0.1–0.5 mm. A periodic and a random structure
of coarse sand inclusions in a fine sand matrix were created.
Despite the advanced techniques used, the data still contain
several sources of error (e.g., neutron scattering, uncertain
transformation of measured beam intensity into water con-
tent, imperfect packing, artifacts due to imperfect contacts
between the cubes). Therefore, simulated data are initially

used to develop the error model concepts in an environment
that only considers model inadequacy as a source of error.

[12] The soil columns used in the MSO experiment were
drained by a stepwise application of five pressure heads
(�10, �20, �30, �40, �50 cm) at the bottom of the col-
umn. In between each pressure step, the column was
allowed to reach hydrostatic equilibrium. The setup of each
data set is further explained in section 2.2.1 and section
2.2.2. The heterogeneous packing of the soil columns con-
sisted of 20 horizontal layers. Radiography measurements
of the RE resulted in 2-D images of horizontally averaged
water saturation (further information about the acquisition
of the RE data, see Vasin et al. [2008]). To make the RE
and the VR data similar, the 2-D RE data were horizontally
averaged, which resulted in one-dimensional (1-D) profiles
of 40 spatially (vertically) spread measurement points for
each data set. Such a point is from here on referred to as a
horizontally averaged layer (HAL) and the concept is fur-
ther illustrated in Figure 1.

[13] As outlined above, the aim of our parameter estima-
tion is to find an effective homogeneous model that repre-
sents the average saturation of the column (i.e., the change
in storage due to infiltration and outflow) using a limited
set of small-scale spatial measurements. To illustrate the
problems and our ideas for solutions, five measurement
strategies are considered in this paper. The five strategies
use different combinations of local (horizontally averaged)
measurements of average saturation taken at the same time
and they are summarized in Table 1. The strategies can be
divided into three groups. The first group of observation
strategies uses measurements taken close to each other,
hence seeing a smaller volume of the column but capturing
larger structures. The second group of strategies uses meas-
urements spread over the column, hence seeing more of the
volume of the column but not capturing larger structures.
The difference between these groups can be understood by
considering the periodic structure in Figure 1 and compar-
ing a strategy that sees the full top inclusion (small cover-
age, large structure) with one that sees only the top HAL,

Figure 1. A horizontally averaged layer (HAL) and the size of an inclusion for the periodic structure.
Gray parts indicate coarse sand while transparent parts indicate fine sand.
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the bottom HAL, and one HAL in between (large coverage,
no structure). The third group of strategies uses all avail-
able spatial and temporal data. Other approaches relying on
heterogeneous models are available to analyze this third
case, and they might provide better results. However, the
focus of this paper is on strategies to improve effective pa-
rameter estimation and this reference case is presented for
comparison only. The first group is represented by the top
and the connected strategies, the second group is repre-
sented by two spread strategies and the last group is repre-
sented by the all data strategy (Table 1).

[14] This way of treating the data from a MSO experi-
ment is unconventional and it is clear that spatially spread
soil moisture measurements are typically not available in
this type of experiment. However, the idea of the effective
parameter estimation performed here should not be con-
fused with the common use and goal of a MSO experiment.
The aim of this paper is to investigate approaches to obtain
an upscaled simple model based on local and spatially
spread out measurements. We only use data from MSO
experiments because of the availability of the RE data of
Vasin et al. [2008], which allows very detailed investigations
of our research questions. Clearly, the ideas explored here
are meant to be applicable to a wider range of hydrological

flow problems, and surely extend beyond the MSO experi-
ment discussed here.

2.1.1. Real Experiment Data
[15] The data presented by Vasin et al. [2008] consisted

of two MSO experiments, one for a periodic structure and
one for a random structure. These structures are shown in
Figure 2 (left and middle) and consist of two sands
arranged in different patterns. The two structures are con-
sidered because they have different representative elemen-
tary volumes (REV). The periodic structure has a perfect
REV (one inclusion) but the volume percentage of coarse
sand differs between the layers, while the random structure
has no REV but instead has the similar volume percentage
of coarse sand in each layer. We used horizontally aver-
aged observations (2-D) from neutron radiography, which
were taken once every minute during drainage after the
water pressure at the bottom of the column was decreased.
The drainage of the periodic structure resulted in strong air
entrapment inside the coarse sand inclusions. Since the
effects of air entrapment are not represented by the model
used in our simulations, the periodic structure is only con-
sidered for the VR cases. More information about the
experiment can be found by Vasin et al. [2008].

[16] To increase the number of real data cases, the ran-
dom structure is analyzed in three different approaches. In
the first approach we used the full data set with all horizon-
tally averaged layers (1-D). The second and third approach
use measurements from only two vertical stripes, called
line A and line B (see Figure 2) that represent a much more
layered structure than the fully averaged data of the entire
random structure. Because of this more layered structure,
line A and line B represent more difficult cases for effective
parameter estimation.

[17] The MSO experiment carried out by Vasin et al.
[2008] used five pressure heads, applied in sequence at the

Table 1. The Different Measurement Strategies Used for the
Parameter Estimationsa

Strategy No. of HALs HAL Used

All data 40 1, 2, 3, . . . , 40
Top 5 35, 36, 37, 38, 39
Spread 1 5 5, 6, 17, 18, 30
Spread 2 5 5, 11, 15, 18, 30
Connected 5 20, 21, 22, 23, 24

aThe horizontally averaged layers (HALs) are counted from bottom (1)
to top (40) of the column (cf. Figure 1).

Figure 2. The structures used in the test cases: random (left), periodic (middle), and layered (right).
Gray parts indicate the coarse sand while the fine sand is transparent. The red sections in the random
structure highlight the subsections line A (left) and line B (right).
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bottom of the column, while the side walls were closed and
the top was open to the surrounding. Since the duration of
the experiment was rather short (<24 h) evaporation from
the open top was neglected. For the RE data, we use meas-
urements at 113 points in time so that a full data set con-
sists of 113 temporal �40 HAL measurement points. Of
these 40 HALs, different combinations are used as observa-
tion data for effective parameter estimation, as explained in
Table 1.

2.1.2. Virtual Reality Data
[18] For the generation of the heterogeneous virtual real-

ity, three soil columns were used: a random and a periodic
structure based on the RE and one extra column with a lay-
ered structure, which is also shown in Figure 2 (right). The
layered structure is used specifically because of the unfav-
orable behavior caused by the variation in volume fraction
of coarse and fine sand between each layer, which means
that no REV can be found. Of course the layered structure
is most representative for real soils and more likely to occur
in the field than the periodic and the random structure.

[19] The hydrological model used in this study relies on
the Richards equation:

nf @S

@t
�r � ½KuðhÞðrhþ 1Þ� ¼ 0; (1)

where S(–) is the water saturation, nf (–) is the porosity, Ku

(m s�1) the unsaturated hydraulic conductivity, h (m) is the
water pressure head (negative for unsaturated conditions),
and 1 is the unit vector in z direction positive upward. For
the water retention and hydraulic conductivity curves an
approach similar to the Brooks-Corey parameterization
[Brooks and Corey, 1966] is used, but with a different
exponent for the hydraulic conductivity and retention
curves:

Se ¼
S � Srw

Ssat � Srw
¼ hd

h

� ��sat

1

for h > hd

for h � hd ;

8><
>:

Ku ¼ KsatS
�perm
e ;

(2)

where Se (–) is the effective water saturation, Srw (–) is the
residual water saturation, Ssat (–) is the maximum water sat-
uration, hd (m) is the air entry pressure head, Ksat (m s�1) is
the saturated hydraulic conductivity, and �perm (–) and
�sat (–) are shape parameters.

[20] All columns have a size of 10 � 10 � 20 cm3 and
consist of 2000 cells of size 1 � 1 � 1 cm3 that each can be
fine or coarse sand. For the simulations, the system is dis-
cretized into 16,000 cells (20 � 20 � 40). Using finer reso-
lutions did not change the results significantly. Table 2
shows the hydraulic parameters used for the two sands.

Materials with a strong contrast were chosen to create a dif-
ficult case study and to clearly be able to distinguish
between the two materials.

[21] The model ParFlow [Ashby and Falgout, 1996;
Jones and Woodward, 2001; Kollet and Maxwell, 2005] is
used for all water flow simulations in this study. ParFlow
solves the Richards equation using an implicit backward
Euler finite difference scheme and a Newton-Krylov non-
linear solver. Simulations of the VR MSO experiment are
set up to be similar to the real experiment. The same five
pressure heads as in the real experiment are applied at the
bottom of the column, while the side walls and the top are
simulated as no flux boundaries. For the VR data, 68 data
points are used in time, so that each column has a full data
set of 68 temporal �40 HAL measurement points.

2.2. Parameter Estimation Setup

[22] The observation data from the virtual reality and the
real experiments were used to estimate effective model pa-
rameters for a homogeneous model. Examples in the litera-
ture [e.g., Coppola et al., 2008; Vogel et al., 2008; Zurmühl
and Durner, 1998] and early trials (not shown here) have
shown that a single set of effective parameters cannot capture
the main features of the outflow curve of such a heterogene-
ous column. Therefore, a simplified two-material formulation
is used for the pressure-saturation relation:

Se ¼
S � Srw

Ssat � Srw

¼ �ðcoarseÞ � SðcoarseÞ
e þ �ðfineÞ � SðfineÞ

e ;

Ku ¼ KðeffÞ
sat S

�
ðeffÞ
perm

e ;

(3)

where Se (–) is the averaged effective saturation, Ssat (–)
and Srw (–) are the average maximum saturation and resid-
ual saturation, respectively, computed as S

sat=rw
¼

�ðcoarseÞ � SðcoarseÞ
sat=rw þ �ðfineÞ � SðfineÞ

sat=rw, �ðAÞ (–) is the volume

ratio of material A, SðAÞe is the Se value from equation (2)
for material A, Ku is the average unsaturated hydraulic con-
ductivity, and �ðeffÞ

perm is a shape parameter for the averaged
hydraulic conductivity curve. This formulation hence takes
the weighted arithmetic mean of the retention curves of
two materials that both have a set of Brooks-Corey parame-
ters and is similar to the formulation used by Durner
[1994]. When using equation (3) it is assumed that the two
materials are separable and have a well defined volume
fraction. It is also assumed that the two materials are con-
nected throughout the structure to avoid local entrapment.
A summary of the parameters used for effective parameter
estimation and their prior distribution are given in Table 3.

[23] Equation (3) can be used to derive an upscaled
model when the structure is known in detail, as is the case
in this study. This has been discussed by Vasin et al. [2008]

Table 2. Parameter Values for the Two Sandsa

Material Ksat (m s�1) �sat (–) �perm (–) hd (m) � (–) Ssat (–) Sres (–) nf (–)

Coarse sand 5.83 � 10�2 2.9 3.2 0.25 0.32 0.97 0.10 0.43
Fine sand 3.78 � 10�4 4.7 3.2 0.44 0.68 0.97 0.14 0.43

aFor explanation of the parameters see equation (2). � is the volume ratio of each material and nf is the porosity.
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for the random and the periodic structure. For the random
structure, which shows only small variations in the volume
percentage of coarse and fine sand between the layers, an
excellent match to the assumptions of equation (3) is
expected. However, the effective hydraulic conductivity
function cannot easily be cast into a common parameteriza-
tion valid for arbitrary structures. Therefore, we chose to
use the simplified parameterization given in equation (3).

[24] The homogeneous model with effective hydraulic
properties is solved in 1-D using ParFlow with 40 layers
and a maximum time step of 60 s. Model output is gener-
ated with 60 s intervals. The seven hydraulic parameters
(Table 3) are estimated using Markov chain Monte Carlo
(MCMC) simulation using the DREAM algorithm [Vrugt
et al., 2008]. The DREAM algorithm is chosen because it is
an efficient MCMC parameter estimation algorithm that
provides both the best fitting parameters and their uncer-
tainty. In this work we initially assume that the residuals r
are mutually independent and follow a Gaussian distribution
with zero mean and known standard deviation � ¼ 0:15.
Our choice of � reflects the large variations in saturation
found in the full 3-D column and is assumed to integrate
over several error sources, including those associated with
using a homogenenous effective model to represent a heter-
ogeneous reality. The chosen value may therefore seem
large, but does well reflect the standard deviation of the sat-
uration data. For a simulated saturation Ssim, obtained with
the effective hydraulic parameters �, the posterior probabil-
ity density p, given observations Sobs, and a noninformative
prior, can be calculated as [e.g., Gelman et al., 2004, p. 48]:

rð�; SobsÞ ¼ Sobs � Ssimð�Þ; (4)

pð�jSobsÞ / exp � 1

2

XNt

j¼1

XNs

i¼1

r2
j;ið�; SobsÞ
�2

" #
; (5)

where Nt and Ns are the number of observations in time and
space, respectively. The convergence of the MCMC simu-
lation is assessed using the R̂ convergence criterium [e.g.,
Gelman et al., 2004, p. 297]. All MCMC simulation results
presented here are based on at least 1000 draws from

the posterior distribution after converge was achieved
(R̂ < 1:2).

2.3. Validation

[25] Three validation scenarios were defined for the VR
cases in order to assess the predictive power of the esti-
mated hydraulic parameters. All three scenarios are eval-
uated using the average saturation of the full column

Sj ¼ 1
Ns

XNs

i¼1
Sj;i

� �
and the internal water distribution is

not considered. The three scenarios are: the multistep
drainage experiment used for the parameter estimation, a
three step infiltration scenario, and a one-step drainage sce-
nario. The initial and boundary conditions used in these
validation scenarios are shown in Table 4 and the flow
behavior can be seen in Figures 3, 4, and 5. The two new
validation scenarios were selected to provide more insights
in the reproduction of flow dynamics of the estimated
effective hydraulic parameters.

[26] At this point, it is important to note that we are not
interested in the actual parameter values resulting from pa-
rameter estimation in this study. Instead, we focus only on
the predictive power of the estimated parameters in the val-
idation scenarios. Evaluation of the predictive power is
done in two ways. First, the maximum likelihood parameter
set from the MCMC simulation is used to evaluate model
performance by visual comparison of measured and mod-
eled average saturation for the three validation scenarios.
Second, the root mean square error (RMSE) is calculated to
quantify model performance:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

j¼1

g2
j

vuut : (6)

The RMSE is calculated both from the difference in water
saturation (gj ¼ Sobs; j � Ssim; j) and the difference in the rate
of change of the saturation (gj ¼ @Sobs; j=@tj� @Ssim; j=@tj),
where the required time derivative is calculated numerically
using backward finite difference.

[27] For the RE, independent validation scenarios are not
available. Although infiltration experiments were per-
formed on the random structure, hysteresis effects were so
strong that a meaningful evaluation is not possible in the
context of this study. Therefore, the RE is only evaluated
using the fully averaged data from the multistep outflow
experiment. For clarity in the following figures, only the
maximum likelihood model predictions are shown. The
posterior distribution of the parameters and model predic-
tions are illustrated in separate tables and figures.

Table 3. Prior Parameter Ranges for the Hydraulic Parametersa

KðeffÞ
sat �

ðcoarseÞ
sat �

ðfineÞ
sat �ðeffÞ

perm hðcoarseÞ
d hðfineÞ

d �

Upper limit �2 3.4 3.4 3.9 0.9 0.9 0.9
Lower limit �16 �0.7 �0.7 0 0.1 0.1 0.1

aKsat and the three � values are log transformed to increase sampling
efficiency.

Table 4. Setup of the Three Validation Scenariosa

Initial Boundaries Times
Name Condition Top (mm s�1) Bottom (m) Sides (min)

Drainage FS NF �0.1, �0.2, �0.3, �0.4, �0.5 NF 18, 35, 133, 333, 600
Infiltration HE 0, �0.02, 0, �0.04, 0 �0.4 NF 10, 20, 40, 50, 70
One step FS NF �0.4 NF 50

aTimes refer to the time when a boundary is changed, and the last time is the duration of the simulation (FS ¼ fully saturated, HE ¼ hydrostatic equilib-
rium, NF ¼ no flow).
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3. Estimation of Effective Hydraulic Parameters
3.1. Virtual Reality

[28] Effective hydraulic parameters were estimated for a
total of around 100 different simulation scenarios using dif-
ferent structures and different combinations of spatial data.
The results show that the different structures performed
very differently, as would be expected. For the random
structure, the MCMC algorithm converged quickly and the
resulting parameters performed well in the validation sce-
narios. The results for the periodic structure showed a
strong dependence on where the measurements were taken
in the column. Parameter estimation for the layered struc-
ture is more difficult compared to the other two structures

because of the complex structure. In the following, the per-
formance of the estimated effective hydraulic parameters in
the validation scenarios is described in detail for each struc-
ture. The validation scenarios are shown in Figures 3, 4,
and 5 for the random structure, the periodic structure, and
the layered structure, respectively. The associated model
performance is summarized in Table 5.

[29] The estimated hydraulic parameters performed well
for the random structure, which can be explained in two
steps. First, the underlying assumptions of the two-material
Brooks-Corey parameterization (equation (3)) are that each
layer has the same volume fraction for the two materials
and that each of the materials is connected throughout the

Figure 3. Results of the validation scenarios for the random structure using different measurement
strategies.

Figure 4. Results of the validation scenarios for the periodic structure using different measurement
strategies.
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sample. These assumptions hold fairly well for the random
structure. The second reason is that the REV used in the pa-
rameter estimation (one cell in 1-D) matches the REV of
the horizontally averaged random structure. Because the ra-
tio between the two materials in the random structure is
close to 35% for most layers, each HAL is a good represen-
tation of the full system and it does not matter so much
which layers are used or how they are combined.

[30] In the case of the periodic structure, the REV also
plays an important role. In this structure, the REV is made
up of the 10 layers that cover one inclusion (Figure 1). The
validation results for the periodic structure show that mea-
surement strategies that capture half, one, or more than one
REV perform better than strategies where the measurements
are spatially spread out. The difference in model perform-
ance between the measurement strategies is illustrated in
Figure 4 and quantified by the RMSE provided in Table 5.

[31] For the layered structure, no REV smaller than the
full structure exists. This is also evident in the validation
results, where the results for the layered structure are worse
than for the other two structures. Only certain beneficial

combinations of measurements provide acceptable results,
although there is no obvious reason why this is the case. In
contrast to the periodic structure, the layered structure
showed no systematic difference between parameter esti-
mations performed with measurements taken close to each
other and parameter estimations using measurements
spread out over the structure. When comparing the model
performance summarized in Table 5, it is obvious that all
measurement strategies (Table 1) perform worse for the
layered structure than for the other two structures, both in
terms of average saturation and dynamic behavior. A possi-
ble exception is the connected measurement strategy,
which apparently covers a very representative selection of
layers. Since clearly no REV can be defined for the whole
layered structure, we believe that this is a coincidence.

[32] Figure 6 (right) shows the horizontally averaged sat-
uration profile at three times together with the simulations
obtained with the best fit parameters using the all data mea-
surement strategy. Two important points can be seen in this
figure. First, the model predictions approximate the mean
saturation well. However, it is evident that it is impossible

Figure 5. Results of the validation scenarios for the layered structure using different measurement
strategies.

Table 5. Model Performance Determined from the Posterior Distribution Obtained with MCMC Simulationa

Structure All Data Top Connected Spread 1 Spread 2

Random Saturation �6.2(�5.1) �5.0(�3.4) �5.3(�4.0) �5.4(�4.1) �5.3(�4.1)
RCS �6.7(�5.9) �6.4(�4.9) �6.4(�5.0) �6.7(�4.9) �6.6(�5.0)

Periodic Saturation �6.0(�5.0) �5.3(�3.5) �4.7(�3.8) �3.5(�3.2) �3.5(�3.2)
RCS �6.7(�5.9) �6.6(�4.9) �5.8(�4.9) �4.1(�3.9) �4.1(�3.9)

Layered Saturation �4.4(�4.0) �2.6(�2.2) �4.9(�3.6) �3.5(�3.2) �3.4(�3.3)
RCS �5.5(�5.2) �3.6(�3.5) �6.0(�4.9) �4.0(�3.8) �3.9(�3.7)

Full Saturation �4.7(�4.4) �3.6(�2.7) �4.2(�3.4) �4.8(�4.1) �4.8(�4.2)
RCS �4.8(�4.7) �4.9(�4.8) �4.8(�4.6) �4.8(�4.7) �4.8(�4.7)

Line A Saturation �4.2(�4.1) �2.5(�2.2) �4.3(�3.6) �4.0(�3.6) �4.1(�3.6)
RCS �4.7(�4.6) �4.8(�4.8) �4.8(�4.6) �4.6(�4.4) �4.7(�4.5)

Line B Saturation �4.5(�4.3) �2.2(�2.0) �3.7(�3.1) �4.3(�3.7) �4.4(�3.8)
RCS �4.7(�4.5) �4.8(�4.8) �4.5(�4.3) �4.7(�4.4) �4.6(�4.4)

aNatural logarithm of minimum RMSE and mean RMSE (in parentheses) according to the definition in equation (6) for the different structures and
measurement scenarios. RMSE is reported for saturation (–) and rate of change of saturations (RCS) (s�1). Please note that to ease the reading of the table,
the displayed values are the natural logarithms of the actual values.
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to match the strong fluctuations of saturation between the
layers with a homogeneous model, and the effective model
will always result from a compromise of the mismatches
between observations and simulations in all observed layers.
Second, the saturation profiles predicted with the effective
model parameterizations have strong inflections near the
drainage front. For example, at a height of 0.07 m and t ¼
200 min, a clear inflection can be seen for the layered struc-
ture that is not present in the random and periodic structures.
This is related to a large volume of fine sand with relatively
high saturation. The effective model is clearly trying to
match the saturation of this particular layer, rather than the
average behavior of all the layers. This leads to a poor per-
formance of the estimated effective parameters when the av-
erage behavior is evaluated and illustrates the problem that
the effective parameters can become very dependent on local
structural features in heterogeneous columns.

3.2. Real Experiment Data

[33] The results for the three data sets and a range of
measurement strategies for the RE case are presented in
Figure 7 and Table 5. Similar to the VR case, the effective
hydraulic parameters determined from the random structure
with fully averaged data (full) perform well and the valida-
tion results presented in Figure 7 are reasonable for most
measurement strategies. This is also confirmed by the per-
formance criteria in Table 5. For line A and line B, which
both approximate a layered structure, the validation results
are more variable, and poorly performing effective hydraulic

parameters that neither match the average saturation nor the
dynamics are found in some cases. Hence, the RE case also
shows a need to improve effective parameter estimates,
although not as clear as the layered structure in the VR case.

4. Bias Correction Using an Explicit Error
Model

[34] In an attempt to obtain effective parameters with
more predictive power, explicit error models are now intro-
duced. In the context of this paper, an explicit error model
is an external change of the simulated saturation values to
take into account some of the soil structure present in the
data without complicating the effective model and its pa-
rameters. The error models used in this paper can be under-
stood from two different perspectives. The first perspective
starts with the assumption of Gaussian distributed errors in
the likelihood defined in equations (4) and (5). Equation (5)
can be rewritten to explicitly consider the zero mean expec-
tation of the distribution:

pð�jSobsÞ / exp � 1

2

XNt

j¼1

XNs

i¼1

ðrj;i � 0Þ2

�2

" #
: (7)

Considering that the layers of the heterogeneous soil col-
umns can have different volume fractions of fine and coarse
sand, the assumption of a zero mean in all layers seems
questionable. Instead, it would seem that allowing certain
layers to deviate from a zero mean is beneficial to the

Figure 6. Example of horizontally averaged saturation profiles from measurements (solid lines) and
simulations (dashed lines) for the random (left), periodic (middle), and layered (right) structure. All
simulations are based on parameters estimated using the all data measurement strategy.
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search for effective parameters. An error model in the form
of a nonzero mean is therefore introduced:

pð�jSobsÞ / exp � 1

2

XNt

j¼1

XNs

i¼1

ðrj;i � emj;iÞ2

�2

" #
; (8)

where em is the error model parameter.
[35] Following the work of Carter [2004], the error

model of equation (8) is expanded to a fractional error
model, where emj;i is a fraction of the simulation result :

emj;i ¼ Sorg
j;i � ei; (9)

where Sorg is the original saturation, either simulated by the
flow model (Sorg ¼ Ssim) or observed in reality (Sorg ¼ Sobs)
and ei is the fractional error model parameter that is vari-
able in space but constant in time. In this way, ei could be
considered as a bias correction in the layers.

[36] The second way of looking at the explicit error
model is to see it as a transformation of the simulated (or
observed) values:

SEM
j;i ¼ Sorg

j;i þ emj;i ¼ Sorg
j;i � ð1þ eiÞ; (10)

where SEM is the saturation after applying the error model.
The probability density is than calculated as in equations
(4) and (5). The form of equation (10) shows clearly that
for each spatial observation (Sorg

:;i ), there will be a corre-
sponding error model parameter (ei).

[37] The first perspective highlights the similarity of this
error model to the use of heteroscedastic error standard
deviations (�) discussed by Rigby and Stasinopoulos [1996]
and the treatment of heteroscedastic non-Gaussian errors
by Schoups and Vrugt [2010]. The connection between
approaches that consider heteroscedastic errors and error
model approaches was also pointed out by Reichert and
Meileitner [2009] who noted that using an inappropriate

likelihood function and not accounting for deficiencies in
the model structure can mean the same thing.

[38] The second perspective on the error model is more
pragmatic and shows that the error model is related to the
idea of applying external changes to the model. The simi-
larities with the work of Kavetski et al. [2006], Vrugt et al.
[2008], and Reichert and Meileitner [2009] are obvious.
Kavetski et al. [2006] and Vrugt et al. [2008] allowed a
change of the rainfall input to a hydrological model by
introducing a rainfall multiplier for each precipitation event
as an estimated parameter. Reichert and Meileitner [2009]
considered both rainfall and evaporation multipliers to aid
the parameter estimation. Even though the approaches have
similarities, there also clear differences. For example, the
multipliers are applied to the model input, while the error
model is applied to the model output. The error models
used herein also have similarity with autoregressive error
models that are sometimes used to improve streamflow pre-
dictions [e.g., Laloy et al., 2010b]. These autoregressive
models strive to reduce the impact of autocorrelated model
residuals on the estimated effective model parameters by
introducing an error model that assumes an error that
depends on the error at the previous time step. Finally, there
is also a clear connection between the error models used
herein and data assimilation methods, such as the ensemble
Kalman filter. Data assimilation methods estimate and update
model states, hence also applying external changes as the
simulation goes along, although the error model used in this
study does not change in time as is the case with a Kalman
filter. Ensemble Kalman filter methods have been used in
reservoir modeling [e.g., Oliver and Chen, 2011], ground-
water modeling [e.g., Hendricks Franssen and Kinzelbach,
2008], and have also successfully been tested in combination
with global optimization for hydrological model calibration
[Vrugt et al., 2005].

[39] An argument against the use of an external error
model could be that changing saturation outside of the flow
model might violate the mass balance of the system during

Figure 7. Validation results for the drainage scenario for different cases of the real experiment data
using different measurement strategies.
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drainage. Of course, the error model parameters could be
constrained in such a way that mass is conserved. In this
case, only redistribution of mass within the system would
be allowed. Such a constraint on the mass balance is not
explored in this study for the following reasons. First, the
mass of the system is only truly fixed if the fluxes over the
boundaries are fully controlled. In our study, boundary con-
ditions are given as pressure heads, which means that the
flux over the boundaries and the associated mass balance
depend on the choice of hydraulic parameters. Second, the
error model is only applied to simulations for selected mea-
surement points that might not be representative for the
whole column. In such a case, a constraint on the global
mass balance might not be meaningful because a nonzero
correction can be beneficial when the selected measure-
ments are not representative for the whole column.

[40] An alternative approach to the use of error models
would be to explicitly define a heterogeneous model
instead of an effective homogeneous model and to subse-
quently estimate hydraulic parameters for each unique
layer. This approach would be computationally extremely
demanding except when the structure of the model is
reduced to a very small number of layers. We do not follow
this approach in this study, but a discussion of the benefits
and drawbacks of effective homogeneous and heterogene-
ous modeling approaches is provided in section 4.3. The
computational effort could be reduced if the different po-
rous materials are assumed to be Miller-Miller similar
[Miller and Miller, 1956]. In this case, hydraulic parameter
sets of different layers could be transferred into each other
using a single scaling parameter. As in the error model
approach suggested herein, this would mean that a single
set of hydraulic parameters and one extra parameter per
layer (in this case the Miller-Miller scaling parameter)
would have to be estimated. This approach is not followed
here because Miller-Miller similarity is not a reasonable
assumption for the sands used in the RE case [see further
Vasin et al., 2008]. Also, as explained further below, the
calibration problem can be solved sequentially for the error
model suggested here, which makes the solution fast. This
would not be possible if a heterogeneity factor would be
assigned to the parameters.

[41] It is important to note that even though the flow
model (equation (1)) is strongly nonlinear, the error models
of equations (8) and (9) are linearly dependent on the resid-
uals (equation (4)). This means that the parameter estima-
tion process can be performed sequentially, i.e., the error
model parameters can be estimated with a simple linear es-
timator for each set of flow model parameters. In fact, all
error model parameters in this paper can be calculated ana-
lytically. For ease of reading, only the analytical solutions
are provided in the following, while the derivation is
described in Appendix A.

[42] Finally, it is important to mention that the error
models used in this paper are only applied to unsaturated
soil since a fully saturated cell does not discriminate
between the water saturation of the different materials (see
Table 2). This can be done since we do not estimate Ssat

(cf. equation (2)) and therefore have no wish to change the
saturation values at full saturation. To limit the number of
figures and tables in the evaluation of the error model, the
only structures evaluated with the error models are the

layered structure from the VR and line A and line B from
the RE.

4.1. Error Model for Virtual Reality

4.1.1. X-Parameter Error Model
[43] In the first approach, referred to as the X-parameter

error model (X-EM), all seven hydraulic model parameters
(Table 3) are being used together with one error model pa-
rameter per HAL. In this case, the error model is defined by

ei ¼ ei; 8i 2 HAL; (11)

where ei is the error model parameter for layer i from equa-
tion (9), which gives the following analytical solution for the
error model parameters (for derivation, see Appendix A):

ei ¼

XNt

j¼1
Sobs; j;i � Ssim;j;iXNt

j¼1
S2

sim; j;i

� 1: (12)

[44] The calculated error model parameters for the poste-
rior distribution of the 40 HALs measurement strategy
clearly show a similarity with the structure. This is shown
in Figure 8, where the posterior error model parameters are
shown together with a representation of the ratio between
fine and coarse material in the original column, the so called
structure signal. Figure 8 indicates that the X-parameter error
model can handle the problem with the large differences in
saturation between the layers due to the structure quite
well, as evidenced from the high (absolute) error model

Figure 8. Comparison between the error model parame-
ter values of the X-parameter error model, computed from
the posterior parameter distribution of the all data measure-
ment strategy, and the structure signal used in section 4.1.2.
Please note that the scale on the x axis refers to the error
model values and that the structure signal is superimposed
to show the similarities in shape. It is not to scale.
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parameter values that are associated with layers that show a
strong deviation from the mean of the structure signal. The
performance of the X-EM in the validation scenarios is
shown in Figure 9, where the average saturation over time
is shown for the different measurement strategies (Table 1).
Figure 10 shows the range of RMSE values for saturation
and change in saturation (equation (6)) determined from
effective hydraulic parameters drawn from the posterior
distribution for the X-EM approach.

[45] As can be seen in Figure 9, the use of the error
model helps to improve model performance for most mea-
surement strategies. Only the performance of the connected
measurement strategy strongly decreased with a particu-
larly strong offset in the average saturation after implemen-
tation of the error models. This indicates that a simple error
model that only depends on the simulations and observa-
tions can be useful to improve model performance of
poorly performing models. However, the introduction of an
error model might also entail a deterioration of predictive
power because of a lack of restrictions on the error model
parameters.

4.1.2. Two-Parameter Error Model
[46] To add a forced dependence of the error model on

the structure, a two-parameter error model that requires
prior knowledge of the structure is tested:

ei ¼ Zstr;i � eshape þ ebias; 8i 2 HAL; (13)

where Zstr is a structure signal containing prior information
about the structure, eshape is an error model parameter that
changes the shape of Zstr, and ebias is a second error model
parameter that corrects for offsets in Zstr. The structure sig-
nal is prescribed, meaning that only two error model pa-

rameters are estimated. When the
XNt

j¼1

XNs

i¼1
is denoted

as
XX

, the analytical solution to equation (13) is (for
derivation, see Appendix A)

XX
ðS2

sim; j;iZ
2
str;iÞ

XX
ð2S2

sim; j;iZstr;iÞXX
ð2S2

sim; j;iZstr;iÞ
XX

ðS2
sim; j;iÞ

0
@

1
A eshape

ebias

 !

¼

XX
ðSobs; j;iSsim; j;iZstr;i � S2

sim; j;iZstr;iÞXX
ðSobs; j;iSsim; j;i � S2

sim; j;iÞ

0
@

1
A:

(14)

In contrast to the previous approach, these error model pa-
rameters are stationary in both time and space. The choice
of the structure signal Zstr is crucial to the success of this
approach. If a good estimate of the volume fraction of the
materials in the different layers exists, a structure signal of
the following form can be used:

Zstr;i ¼ ratiofine;i; 8i 2 HAL; (15)

where ratiofine;i is the volume fraction of fine material in
layer i. The shape of Zstr for the layered structure is shown
in Figure 8. The results of the validation scenarios are
shown in Figures 10 and 11. An improvement of the model
performance by the two-parameter error model is apparent
in most cases. Again, only the predictive power of the con-
nected measurement strategy (see Table 1) deteriorates.
The differences between measured and modeled saturation
are, however, smaller than for the previous error model.
Similar to the X-parameter error model, the top measure-
ment strategy also showed considerable deviations between
measured and modeled saturation. For this measurement
strategy, no difference in the performance can be seen
between the X-parameter error model and the two-parame-
ter error model. It should, however, be noted that both error
model approaches clearly showed improved model per-
formance in the validation for the top measurement strategy
(Figures 9 and 11). This illustrates the necessity for valida-
tion data to properly assess the added value of any error
model.

Figure 9. Results of the validation scenarios for the layered structure. Comparison between results
obtained with and without the use of the X-parameter error model for different measurement strategies.
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[47] Obviously, the two-parameter error model requires
considerable prior information since a representative descrip-
tion of the structure in the column is needed and the use of
an inappropriate structure could easily yield inappropriate

results. Such cases have been tested, but are not presented
here. Therefore, the two-parameter error model is not likely
to be useful outside of any virtual reality or strictly controlled
laboratory experiment.

4.1.3. Class Based Error Model
[48] In practice, it might be difficult to obtain detailed in-

formation about subsurface structure. However, a rough
idea about structural properties and materials might exist.
A more realistic structure signal could then be a signal that
is simply divided into n classes, where each class has an
error parameter of its own:

ei ¼

e1 if i 2 class 1

e2 if i 2 class 2

. . .

en if i 2 class n

; 8i 2 HAL

8>>>><
>>>>:

(16)

which results in the following analytical solution, here
shown for class n :

en ¼

XNt

j¼1

X
i2 class n

Sobs; j;i � Ssim; j;iXNt

j¼1

X
i2 class n

S2
sim; j;i

� 1: (17)

If n is the same as the number of layers, this model is iden-
tical to the X-parameter error model (equation (11)). The
error model is tested here for the case of n ¼ 3 for the lay-
ered structure. Once the number of classes is fixed, the
layers have to be assigned to the classes. Figure 12 together
with Figure 10 shows the results for the validations scenarios
using n ¼ 3 and classes based on the fine sand fraction.
Class boundaries were chosen such that each class includes
a similar number of layers (less than 48% fine sand, 48%–
93% fine sand, and more than 93% fine sand).

[49] The class based error model on average performs
worse than the other two error models in the validation

Figure 10. Range of the RMSE derived from the poste-
rior parameter distribution for the layered structure. Com-
parison between RMSE ranges obtained with and without
the use of several error model approaches. The markers
show minimum (left marker), mean (middle marker), and
maximum (right marker) RMSE (equation (6)). Dots show
RMSE for saturation (–) and diamonds show RMSE for the
rate of change of saturation (s�1).

Figure 11. Results for the validation scenarios for the layered structure. Comparison between results
obtained with and without the use of the two-parameter error model for different measurement
strategies.
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scenarios (Figure 12). A similar behavior as with the two-
parameter error model can be seen, but the positive effects of
the two-parameter error model are more evident. This is logi-
cal since the class based model is a coarse approximation of
the two-parameter model. Compared with the X-parameter
error model, most measurement strategies perform worse. How-
ever, the restriction of the number of classes also avoids a
strong deterioration of predictive power between estimation
and validation for all measurement strategies and even the
connected measurement strategy performed reasonably well.

[50] As with the two-parameter error model, the diffi-
culty with this method is the selection of the structure sig-
nal. However, it is not unreasonable to assume a certain
amount of knowledge about the structure and even the satu-
ration data can provide information on layering. Of course,
the selection of an inappropriate structure has a negative
impact on the results (not shown).

4.2. Real Experiment Data

[51] The three error models are evaluated for the real
data cases line A and line B using the connected and spread
1 measurement strategies (Table 1). Validation results are
shown for line A in Figures 13 and 14 and for line B in
Figures 13 and 15. As one can expect, the results are less
clear when dealing with real data. The figures indicate that
average saturation improves in some cases with the intro-
duction of the error model, but in other cases the perform-
ance decreases. The decrease in model performance is
strongest for cases where the original calibration agreed well
with the validations. This is no surprise since, as pointed out
before, the error models may violate the mass balance. The
effect of this is more evident when using the RE data since
other error sources besides missing structure affect parame-
ter estimation and may lead to a decrease in performance in
the validation. Interestingly, the use of error models did not
have any negative effect on the dynamics of the average sat-
uration in the column. On the contrary, the dynamic behav-
ior in the validation improved in most cases. The best

example of this can be seen in the right plot of Figure 14,
where the dynamic improvements are obvious, but espe-
cially the two-parameter error model shows a strong devia-
tion in average saturation. Again, the modeler needs to

Figure 12. Results for the validation scenarios for the layered structure. Comparison between results
obtained with and without the use of class based error model with n ¼ 3 classes for different measure-
ment strategies.

Figure 13. Range of the RMSE derived from the poste-
rior parameter distribution for the RE case. Comparison
between RMSE ranges obtained with and without the use
of several error model approaches. The markers show mini-
mum (left marker), mean (middle marker), and maximum
(right marker) RMSE (equation (6)). Dots show RMSE for
saturation (–) and diamonds show RMSE for the rate of
change of saturation (s�1).
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weight the performance criteria and decide what aspects of
the model simulations need to be reproduced reliably.

[52] Interestingly, the two-parameter error model does
not seem to perform better than the class error model and
in many cases the results are worse. This difference to the
VR experiments can probably be attributed to the structure
signal used in the RE. As mentioned before, imperfect
packing and interfaces between the different inclusions in
the RE are two possible reasons why the used signal may
not be ideal. In general, the results for the real data confirm
the findings for the virtual reality data. This suggests that
the use of an external error model could be a useful strategy
to estimate effective model parameters with more predic-
tive ability for a strongly heterogeneous reality.

4.3. Error Model Summary and Discussion

[53] It comes as no surprise that many of the basic param-
eter estimation scenarios presented in section 3 showed
poor results. Fitting an effective homogeneous model to a
strongly heterogeneous reality is fundamentally problem-
atic. Since we aimed to reproduce the averaged water fluxes
and water contents, the validation data used in this study

focused on average saturation. The internal water distribu-
tion was not considered and was, most likely, not well
reproduced. The performance criteria used to summarize
the model performance during validation focused on the
reproduction of the average saturation and the flow dynam-
ics. The importance assigned to these performance criteria
depends on the aim of the modeling. Our results show that
an improvement for one performance criterion can be asso-
ciated with deterioration in another criterion.

[54] Some of the issues associated with the estimation of
effective hydraulic parameters could have been avoided by
the use of a detailed heterogeneous model. If layers with
individual model parameters would be used in such a
model, the model predictions could improve substantially
[e.g., Durner et al., 2008] and the resulting model would
probably be a better physical representation of the reality.
Furthermore, such a layered model could probably better
represent the internal water distribution, which cannot be
expected for effective homogeneous models with or with-
out an additional error model. The drawbacks of using a
heterogeneous model are also evident. First, boundaries
between different layers would need to be defined, which is

Figure 14. Results of the validation scenario for line A in the RE using the connected and the spread 1
measurement strategies. Comparison between different error model approaches.

Figure 15. Results of the validation scenario for line B in the RE using the connected and the spread 1
measurement strategies. Comparison between different error model approaches.
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difficult when limited information is available (i.e., when
the measurements do not cover the entire domain). To set
up such a heterogeneous model, one would need a more
complete idea of the thickness of the different layers than
required for the error model approaches. Second, there are
many more parameters to estimate, and in contrast to the
error model approaches, they cannot be estimated sequen-
tially. This could lead to far larger time requirements for pa-
rameter estimation, unless prior knowledge about parameter
values is explicitly added to the parameter estimation pro-
cess as prior information. Finally, the resulting parameters
become dependent on the position of the observations in the
column and the subsections of data used. It should be noted,
once again, that if one has this prior information to set up a
layered model (for example as we do in our all data case),
this would surely be a more suitable approach. The error
model approaches discussed herein are designed for cases
when only smaller subsections of data are available and
prior information to set up a layered model is not available.

[55] In an attempt to account for unresolved structure in
the estimation of effective model parameters, three different
error models that require different amounts of prior infor-
mation were considered for bias correction. The highest
level of prior knowledge is required by the two-parameter
error model, which needs a representative description of the
structure in the column. This error model performed well
and improved results for most of the VR data. It also
showed a clear improvement in model performance for the
dynamics of the RE data.

[56] In contrast, the most flexible approach is the
X-parameter error model that does not require any prior in-
formation at all. With this error model, most predictions of
average saturation improved. However, the X-parameter error
model also gave the maximum likelihood parameter set
(best calibration result) that performed worst in the valida-
tion scenarios (connected measurement strategy in Figure 9).
This suggests that one should be careful when applying such
a flexible error model, especially when the effective hydrau-
lic parameters estimated without error model perform well
during validation. The X-parameter error model approach
also has a large need for high quality data since the full error
model in its analytical form is only based on the measure-
ments and simulations and no other information.

[57] The third error model was the class error model
approach, which is a compromise between the previous
two. It contains a rough estimate of structure, but the rela-
tion between the classes is not fixed a priori as in the two-
parameter case. In this case, the use of the error model
resulted in a clear improvement of the validation perform-
ance for the flow dynamics, which improved or conserved
prediction quality for all tested cases.

[58] When comparing the spread of the RMSE between
different error models as caused by the posterior uncer-
tainty in the estimated hydraulic parameters for the multi-
step outflow validation scenario (shown in Figure 10),
some observations can be made. First, the use of error mod-
els does not lead to higher RMSE values when comparing
calibrations with and without error model, and in most
cases an improvement in the minimum RMSE is observed.
This implies that each posterior distribution contains pa-
rameter sets that also perform well for the validation sce-
narios, although this parameter set is not necessarily the

same as the one that has the maximum likelihood for the
calibration data. Indeed, it is obvious from comparing the
figures that the most likely parameter sets for the calibra-
tion data are not the parameter sets that provide the best
predictions in the validation scenarios (e.g., compare
Figure 9 with Figure 10). This further highlights the need
for validation data to identify these parameter sets. Second,
it is evident that the range of RMSE values increases dra-
matically when an error model is introduced. This is espe-
cially true for cases that perform poorly without an error
model and not so much for the connected measurement strat-
egy that performs well without error model (see Table 1).
This increases our believe that the effective parameter ranges
obtained with the error models are more representative for
the system.

[59] The range of RMSE values derived from the poste-
rior distribution should, however, be interpreted with care.
The standard deviation of the residuals was assumed to be
high (� ¼ 0:15, cf. equation (8)) to reflect the large varia-
tion of the saturation seen in the data, especially in the case
of the periodic and the layered structure. Smaller values of
� were also tested and resulted in similar performances of
the model with the best suggested parameters but lower ac-
ceptance rates and hence longer run times for the MCMC
algorithm. In the VR case, � should reflect errors intro-
duced by spatial averaging of the observations and errors
associated with unresolved structure. When the error model
is introduced, it is expected that some of the errors intro-
duced by unresolved spatial structure are compensated,
which suggests that � should be lower. Nevertheless, we
decided to keep the same standard deviation when intro-
ducing the error models, leading to a potential overdisper-
sion of the posterior distribution. The same is true for RE
case, although additional sources of error make the choice
of an appropriate value for � even more difficult. As
pointed out before, the primary interest of this work was
the predictive ability of the maximum likelihood estimates
of the effective hydraulic parameters, and the posterior
uncertainty of the model parameters and predictions was of
secondary importance. We only report how ranges of
RMSE values are affected by the introduction of the error
models. Indeed, to appropriately determine predictive uncer-
tainty a different approach should be used to determine �.
Recent studies have explored the estimation of � as an addi-
tional model parameter in a generalized likelihood function
[Schoups and Vrugt, 2010]. Although this method to deter-
mine a more appropriate value of � is promising, it is beyond
the scope of this paper.

[60] A relevant question to address when using MCMC
simulations is the appropriateness of the likelihood func-
tion. With the Gaussian assumption of equation (7), the
residuals should be unimodal, normally distributed and
centered on zero. For the random structure as well as for
the measurement strategies that performed well for the per-
iodic structure, this is the case (results not shown here). For
the layered structure, clear multimodality is often seen. Af-
ter the introduction of the error models, this multimodality
decreases and a more Gaussian shape of the residuals is
obtained. An example of this effect is shown in Figure 16.

[61] It is interesting to note that the use of an error model
improved the predictive power of the estimated parameters
when only a subset of observations was used. It has been
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discussed that hydraulic parameters estimated from outflow
data cannot represent the internal water distribution [Bayer
et al., 2005; Durner et al., 2008; Laloy et al., 2010a]. One
could therefore expect that model parameters estimated
with only a few internal observations should not be able to
represent the outflow. In this case, the error model clearly
helped to bridge the gap between the internal states and the
resulting outflow.

[62] One of the reasons why the use of error models pro-
vided flow models with improved predictive power is
because of the high information content in the data due to
horizontal spatial averaging. In this study we relied on radi-
ography data obtained in the laboratory. Similar data could
be obtained in the field with borehole ground penetrating
radar (GPR) as reviewed by Huisman et al. [2003]. Espe-
cially the zero offset profile mode that provides soil water
content profiles with a high enough temporal resolution to
capture transient processes is promising for field applica-
tions. Emerging within the field of advanced inverse meth-
ods are also coupled inversion approaches, such as Hinnell
et al. [2010], that combine geophysical and forward flow
modeling in one parameter estimation framework. It could
be tested in future work if the coupled inversion of zero off-
set profile GPR data with an effective flow model would
profit from introducing an external error model.

5. Conclusions
[63] The aim of this study was to test external error mod-

els for estimating hydraulic parameters of unsaturated flow
models for the case that an effective homogeneous model
is fitted to observations with small observation volumes in
heterogeneous media. The tests of different external error
models demonstrate that in cases where observation vol-
umes do not cover or nearly cover an REV, such as the lay-
ered column in this study, the use of any of the suggested
error models can improve the performance of the effective
homogeneous model for the validation scenarios. It is also
demonstrated that if prior knowledge of the soil structure is
available to set up a two-parameter or a class-based error
model, using a limited amount of observation from a small
subsection of the column can provide model predictions
with reasonable to good performance in the validation sce-
narios. This suggests that if a limited amount of observa-
tions is available, parameter estimation results can still be

acceptable if knowledge of soil structure is available.
Hence an external error model can be a useful approach if
no REV of the medium can be defined or when an effective
model is sought for a larger scale than the observations.

Appendix A: Analytical Derivation of the Error
Models

[64] Combining equations (4), (8), and (9), the posterior
distribution pð�jSobsÞ can be written as

pð�jSobsÞ / exp � 1

2

XNt

j¼1

XNs

i¼1

½Sobs; j;i � Ssim; j;ið1þ eiÞ�2

�2

( )
:

If we are only interested in the optimum of this distribution,
we can rewrite the posterior sampling problem as a minimi-
zation problem:

f ¼
XNt

j¼1

XNs

i¼1

½Sobs; j;i � Ssim; j;ið1þ eiÞ�2:

For the X-parameter error model of equation (10), this
means finding the optimal values of ei for each layer i. The
previous equation then becomes

fi ¼
XNt

j¼1

f½Sobs; j;i � Ssim; j;ið1þ eiÞ�2g with
XNs

i

ð fiÞ ¼ f :

Given fixed observations (Sobs) and simulations (Ssim), the
ei that minimizes the function fi can be found by equating
the derivative of fi with respect to ei to zero:

@fi
@ei
¼ 0()

XNt

j¼1

f�2Ssim; j;i½Sobs; j;i � Ssim; j;ið1þ eiÞ�g ¼ 0

and to solve for ei :

ei ¼

XNt

j¼1
½Ssim; j;iðSobs; j;i � Ssim; j;iÞ�XNt

j¼1
ðS2

sim; j;iÞ
¼

XNt

j¼1
ðSsim; j;iSobs; j;iÞXNt

j¼1
ðS2

sim; j;iÞ
� 1:

The expansion of the previous equation to the class based
error model of equation (16) is straightforward and results
in

en ¼

XNt

j¼1

X
i2 class n

ðSobs; j;i � Ssim; j;iÞXNt

j¼1

X
i2 class n

ðS2
sim; j;iÞ

� 1:

[65] The analytical solution of the two-parameter error
model (equation (13)) can be derived by minimizing the
function g :

g ¼
XNt

j¼1

XNs

i¼1

½Sobs; j;i � Ssim; j;ið1þ Zstr;ieshape þ ebiasÞ�2:

Given fixed observations (Sobs), simulations (Ssim), and
structure signal (Zstr), the values of es and eb that minimize

Figure 16. Histogram of the residuals for the measure-
ment strategy spread 2 for the layered structure with and
without error models. Dashed lines show two superimposed
normal distributions for comparison.
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g can be found by equating the derivative of g with respect
to eb and es to zero:

@g

@es
¼ 0;

@g

@eb
¼ 0:

Solving the system of equations for eb and es and rewriting
in matrix-vector form results in

es

eb

 !
¼

XX
ðS2

sim; j;iZ
2
str;iÞ

XX
ðS2

sim; j;iZstr;iÞXX
ðS2

sim; j;iZstr;iÞ
XX

ðS2
sim; j;iÞ

0
@

1
A
�1

XX
ðSobs; j;iSsim; j;iZstr;i � S2

sim; j;iZstr;iÞXX
ðSobs; j;iSsim; j;i � S2

sim; j;iÞ

0
@

1
A:

Notation

EM error model.
HAL horizontally averaged layer.

MCMC Markov chain Monte Carlo.
MSO multistep outflow (experiment).
ORG original (no EM) parameter estimation.

VR virtual reality.
RE real experiment.

RMSE root mean squared error.
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