001     11236
005     20240610120216.0
024 7 _ |a 10.1103/PhysRevE.82.031904
|2 DOI
024 7 _ |a WOS:000281873100002
|2 WOS
024 7 _ |a 2128/9311
|2 Handle
037 _ _ |a PreJuSER-11236
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Fluids & Plasmas
084 _ _ |2 WoS
|a Physics, Mathematical
100 1 _ |a Yang, Y.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB37724
245 _ _ |a Swarm behavior of self-propelled rods and swimming flagella
260 _ _ |a College Park, Md.
|b APS
|c 2010
264 _ 1 |3 online
|2 Crossref
|b American Physical Society (APS)
|c 2010-09-15
264 _ 1 |3 print
|2 Crossref
|b American Physical Society (APS)
|c 2010-09-01
300 _ _ |a 31904
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review E
|x 1539-3755
|0 4924
|y 3
|v 82
500 _ _ |a We thank Jens Elgeti and Roland Winkler for stimulating discussions. Y.Y. acknowledges support by the International Helmholtz Research School on Biophysics and Soft Matter (IHRS BioSoft). V. M. is grateful to the RISE program of the DAAD (Germany) and to NSERC (Canada) for financial support. This work was supported in part by the VW foundation through the program "Computational Soft Matter and Biophysics."
520 _ _ |a Systems of self-propelled particles are known for their tendency to aggregate and to display swarm behavior. We investigate two model systems: self-propelled rods interacting via volume exclusion and sinusoidally beating flagella embedded in a fluid with hydrodynamic interactions. In the flagella system, beating frequencies are Gaussian distributed with a nonzero average. These systems are studied by Brownian-dynamics simulations and by mesoscale hydrodynamics simulations, respectively. The clustering behavior is analyzed as the particle density and the environmental or internal noise are varied. By distinguishing three types of cluster-size probability density functions, we obtain a phase diagram of different swarm behaviors. The properties of clusters such as their configuration, lifetime, and average size are analyzed. We find that the swarm behavior of the two systems, characterized by several effective power laws, is very similar. However, a more careful analysis reveals several differences. Clusters of self-propelled rods form due to partially blocked forward motion and are therefore typically wedge shaped. At higher rod density and low noise, a giant mobile cluster appears, in which most rods are mostly oriented toward the center. In contrast, flagella become hydrodynamically synchronized and attract each other; their clusters are therefore more elongated. Furthermore, the lifetime of flagella clusters decays more quickly with cluster size than of rod clusters.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
542 _ _ |i 2010-09-15
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Marceau, V.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB94374
700 1 _ |a Gompper, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)130665
773 1 8 |a 10.1103/physreve.82.031904
|b American Physical Society (APS)
|d 2010-09-15
|n 3
|p 031904
|3 journal-article
|2 Crossref
|t Physical Review E
|v 82
|y 2010
|x 1539-3755
773 _ _ |a 10.1103/PhysRevE.82.031904
|g Vol. 82, p. 31904
|p 031904
|n 3
|q 82<31904
|0 PERI:(DE-600)2844562-4
|t Physical review / E
|v 82
|y 2010
|x 1539-3755
856 7 _ |u http://dx.doi.org/10.1103/PhysRevE.82.031904
856 4 _ |u https://juser.fz-juelich.de/record/11236/files/PhysRevE.82.031904.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11236/files/PhysRevE.82.031904.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11236/files/PhysRevE.82.031904.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11236/files/PhysRevE.82.031904.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11236/files/PhysRevE.82.031904.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:11236
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
914 1 _ |y 2010
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
920 1 _ |d 31.12.2010
|g IFF
|k IFF-2
|l Theorie der Weichen Materie und Biophysik
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |g IAS
|k IAS-2
|l Theorie der Weichen Materie und Biophysik
|0 I:(DE-Juel1)IAS-2-20090406
|x 1
|z IFF-2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)122184
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-2-20090406
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)VDB1346
999 C 5 |a 10.1103/PhysRevLett.75.1226
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.75.4326
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.058101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2003-00346-7
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjst/e2008-00634-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.268101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.77.011920
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1751-8113/42/44/445001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.061908
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.025702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.168701
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.104302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.095702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.77.046113
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.184502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/physa2008.01.081
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.3017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.557
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.098103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.158102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/000187300405228
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1128/JB.151.1.458-461.1982
|9 -- missing cx lookup --
|1 J. M. Kuner
|p 458 -
|2 Crossref
|t J. Bacteriol.
|v 151
|y 1982
999 C 5 |a 10.1073/pnas.0400704101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.068102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rspa.1951.0218
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1242/jeb.35.1.96
|9 -- missing cx lookup --
|1 J. Gray
|p 96 -
|2 Crossref
|t J. Exp. Biol.
|v 35
|y 1958
999 C 5 |a 10.1242/jeb.41.1.135
|9 -- missing cx lookup --
|1 J. Gray
|p 135 -
|2 Crossref
|t J. Exp. Biol.
|v 41
|y 1964
999 C 5 |a 10.1038/nature00832
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1371/journal.pone.0000170
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1110329
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja047697z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.178103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1140414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.058001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/1981221a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.17.2067
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.258103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.74.030904
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/85/38002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.78.031409
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/72/9/096601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1098/rsif.2009.0223
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.058102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.78.061903
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.088101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.bpj.2010.05.015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/9780470371572.ch2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. Gompper
|y 2009
|2 Crossref
|o G. Gompper 2009
999 C 5 |a 10.1209/epl/i2003-10310-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.2976/1.2773861
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.63.020201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1603721
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevE.67.066706
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21