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A powerful method for analyzing general strain states in layer systems is the measurement of

changes in the ion channeling directions. We present a systematic derivation and compilation of the

required relations between the strain induced angle changes and the components of the strain tensor

for general crystalline layer systems of reduced symmetry compared to the basic �cubic� crystal. It

is shown that, for the evaluation of channeling measurements, virtually all layers of interest may be

described as being “pseudo-orthorhombic.” The commonly assumed boundary conditions and the

effects of surface misorientations on them are discussed. Asymmetric strain relaxation in layers of

reduced symmetry is attributed to a restriction in the slip system of the dislocations inducing it. The

results are applied to �110�SiGe/Si layer systems. © 2010 American Institute of Physics.

�doi:10.1063/1.3415530�

I. INTRODUCTION

High elastic strains and stresses can substantially modify

physical properties of surface near layers. An important ex-

ample is the effect of strain/stress on the electronic properties

of semi-conducting surface layers. Misfit strains and stresses

in SiGe layers grown on Si substrates, for instance, can reach

up to a few percent corresponding to a few gigapascal.
1

In

fact, strain engineering has meanwhile become an important

and necessary technique to improve advanced nanoelectronic

devices.
2

Advanced methods have been proposed to relax

strained SiGe layers
3,4

and to transfer strain increments from

a relaxing SiGe layer to a Si cap layer.
5

The aim of such

methods is to increase carrier mobilities
6

and dopant

solubilities
7

in Si layers.

Apart of various x-ray
8,9

and electron diffraction

techniques,
10

a powerful method for the nondestructive char-

acterization of strain states in thin layer systems is Ruther-

ford backscattering spectroscopy in the ion channeling mode

�RBS/C�.11,12
The applicability of this method is based on the

well known fact that strains in crystals are generally associ-

ated with changes in the angles between different crystal

directions—except for purely hydrostatic strains. The accu-

racy for deducing strain states from channeling directions is

highest for low index directions, for instance �100�, �110�,
and �111� in cubic crystals. Limitations of the method are

expected for ultrathin layers consisting only of a few atomic

layers.
1,13

Holländer et al.
14

have described a high-precision

RBS/C goniometer allowing rotations with an angular reso-

lution of 0.005°. The associated error is so small that it does

not significantly affect the accuracy of strain determination

which is, in fact, determined by the physics of channeling.

The simple examples shown in Fig. 1 indicate an angular

accuracy in determining a certain channeling direction �rep-

resented by the location of the dips in the channeling profile�
and the strain induced changes in angles between two direc-

tions of about 0.03° and 0.042°, respectively. This would

correspond to a strain increment of about 0.075%. The un-

certainty in determining a certain component of the strain

tensor is generally higher, around 0.1%, depending on the

number of angle changes required to deduce it as will be

shown below.

In the past, mainly simple planar �100�SiGe/Si layer sys-

tems characterized by plane stress and tetragonal strain states

have been analyzed by RBS/C combined with a plane stress/

biaxial strain model �assuming that the real surface coincides

with the ideal�.1,3,5
Only recently, �100�SiGe/Si layer systems

structured in the form of SiGe stripes in a �110� direction on

Si substrates have been considered with the goal to generate,

by asymmetric strain relaxation in the SiGe stripes, more

favorable stress states close to the uniaxial limiting case in Si

cap layers
15

for which increased carrier mobility is expected.

In this respect, other promising options are planar or pat-

terned �110� or �111� layer systems. In fact, the choices con-

cerning the type of layer planes and directions of stripes are

virtually limited to �100�, �110�, and �111� planes and �110�
directions, respectively, due to limitations in sample prepa-

ration. In changing the type of the layer plane from �100� to

�110� and �111�, the layer symmetry changes from tetragonal

to orthorhombic and trigonal, respectively. In structuring

�100� and �111� layer systems, the symmetry is �further� re-

duced to orthorhombic and monoclinic, respectively, �see

Table I�.
It is useful here to give the reader an idea of the types of

layer systems which we consider to be analyzed by RBS/C.

The specific layer within the system, the strain state of which

is to be determined is assumed to be approximately chemi-

cally homogeneous and homogeneously strained, at least

over the analysis depth of the He+-ions used in RBS/C �about

10 nm to 1 �m�. It is monocrystalline and essentially planar

over the scale of the bombarded area �0.5 to 5 mm Ø�. It isa�
Electronic mail: d.m.buca@fz-juelich.de.
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connected �not necessarily epitaxially� with a substrate and

may be covered by a thin layer. To obtain clearly separated

backscattering signals it is advantageous if the considered

layer contains heavier elements than the substrate, for in-

stance, SiGe on Si. If, for specific reasons, a cap layer is

used, its thickness should be limited to values �10 nm to

avoid disturbing beam steering. The strain state of the layer

is determined by its connection with the substrate, possibly

present misfit dislocations in the interface and the surface

boundary conditions �see below�. Misfit dislocations are in-

evitably connected with intrinsic variations in the strain field.

The strain is effectively homogeneous when the distance be-

tween the misfit dislocations is smaller than the thickness of

the layer. A layer system as sketched here is shown for illus-

tration in Fig. 2.

For deducing strains in layers from RBS/C measure-

ments, the relations between changes in angles between crys-

tal directions and strain tensor components are needed. Even

though the derivation of such relations is straightforward it

becomes increasingly more complicated with decreasing

symmetry of the layer. In order to help possible users of the

method, we present in this study a systematic derivation and

compilation of complete sets of relations between changes of

angles between suitably chosen crystal directions and all

principally accessible components of the strain tensor for the

most important layer systems in cubic crystals. We discuss

the validity of the commonly assumed boundary conditions

and their testing by RBS/C.

The present analysis has been motivated by a very recent

examination of a pure uniaxiality of strain relaxation in

�110�SiGe/Si predicted on the basis of the dislocation dy-

namics assumed to control the relaxation process. In the pub-

lication of the results,
16

the formulas required to evaluate the

RBS/C measurements have been taken from the present

work. In a final section, we will discuss the results presented

in Ref. 16 as an application of our present analysis.

II. STRAIN TENSORS BY CHANNELING

A. Relations between angle changes and strain

It is well known that strains in crystals are generally

associated with changes in the angles between different crys-

tal directions—except for direction conserving purely hydro-

static strain, i.e., dilatation or compression. According to the

latter restriction, only the “deviatory” part, �̃, defined as the

difference between the full strain tensor � and its hydrostatic

part, can be determined by channeling measurements, i.e.,

�̃ = � − trace��/3� · 1 = 	
�2�11 − �22 − �33�/3 �12 �13

�12 �2�22 − �11 − �33�/3 �23

�13 �23 �2�33 − �11 − �22�/3

 , �1�

FIG. 1. �Color online� Examples for measured channeling angular yield

scans, �a� around a �101� and �b� around a �111� direction through �010� and

�1̄10� plans of unstrained 180 nm thick �001�Si and pseudomorphic

Si0.77Ge0.23, respectively. The angular accuracy in determining a channeling

direction defined by the location of the minimum yield is estimated to be

about 0.03°.

FIG. 2. Typical layer system envisaged in modern strain engineering. The

strain in layer 1 is considered to be analyzed by RBS/C. Misfit-dislocations

in the interface to the substrate inducing partial strain relaxation are

indicated.
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where 1 is the diagonal unit tensor. The trace of �̃ vanishes

by construction. Therefore the diagonal elements of �̃ are not

linearly independent of each other, meaning that one of them

can be expressed as a linear combination of the two others.

The following analysis shows that the five independent ele-

ments of �̃ can be determined by channeling measurements,

irrespective of any boundary conditions.

The basis of our subsequent analyses is a general expres-

sion for the strain induced change of the angle �→�� be-

tween two vectors �P ,Q�→ �P� ,Q�� representing two crystal

directions �channeling directions or normal vectors on chan-

neling planes� as illustrated in Fig. 3. We assume that the

distortion of the considered layer is effectively homogeneous

over the range of the investigated area. Large scale rotations

are assumed to be taken into account by proper adjustments

of the RBS/C goniometer and may therefore be neglected

without loss of generality, meaning that the displacement

gradient tensor can be taken to be equal to the strain tensor �.

In this case, the relation between two vectors in the strained

lattice, P�, Q�, and the original lattice, P ,Q, may be repre-

sented as

P� = P + � · P, Q� = Q + � · Q . �2�

The angle, ��, between the two vectors in the strained lattice

may be written, analogously as for the unstrained lattice, in

the form

cos���� = �P� · Q��/�P�
2Q�

2�1/2. �3�

Linear �up to first order� expansion of cos���� with respect to

the angle change �=��−�, and of the right hand side of Eq.

�3� with respect to the strain tensor �, respectively, yields, in

vector/tensor component representation,

tg�����P,Q,�� � Pi�ijP j/PkPk + Qi·�ijQ j/QkQk

− 2Pi�ijQ j/PkQk, �4a�

for PkQk � 0, � � �/2, and

��P,Q,�� � − �2Pi�ijQ j�/�PQ� ,

for PkQk = 0, � = �/2, �4b�

where Einstein’s convention of summing over repeated indi-

ces is to be used. According to Eqs. �4a� and �4b�, the angle

change vanishes, as expected, for purely hydrostatic strain,

�ij =�ij �where �ij is the diagonal unit tensor in Kronecker’s

notation� confirming formally that channeling measurements

can only provide the deviatory part of the strain tensor, �̃.

For strains of the order of 1%, the relative error in the linear

approximations given by Eqs. �4a� and �4b� is of the same

order, i.e., about 1%, which is much smaller than the error

resulting from the experimental uncertainty in measuring

angles.

Applying Eq. �4a� for given pole direction, P, to differ-

ent, appropriately chosen other �channeling� directions ob-

lique to the pole, Q, linearly independent equations for �cer-

tain� components of �̃ can be derived which can then be

solved for those components. For deriving the complete five-

component deviatory strain tensor from such angle changes,

at least five linearly independent relations of the form of Eq.

�4a� are needed, meaning that at least five different directions

Q in at least three channeling planes containing the pole

direction P must be examined. For cubic systems, appropri-

ate sets of directions are illustrated in Fig. 4 and listed in

Table I and II. For complete sets of the stereographical plots

of crystal directions see Ref. 17.

FIG. 3. �Color online� Illustration of a strain induced angle change �→��

between two vectors �P ,Q�→ �P� ,Q�� representing two crystal directions

�lattice vector in “pole” directions and body diagonal�.

FIG. 4. Stereographic projections of crystal directions recommended for examination of �a� �100�, �b� �110�, and �c� �111� layer systems on cubic crystals by

RBS/C.
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For discussing the physics revealed by channeling mea-

surements, it is useful to consider the strain tensor in a coor-

dinate system adapted to the symmetry of the layer �distin-

guished in the following from the standard coordinate system

of the crystal structure by apostrophes�. One way to obtain

the strain tensor in such a layer adapted system is to first

derive it in the standard crystal system and to transform it

then to the layer system. We have used this method for all

layer types listed in Table I. Though straightforward, this

procedure becomes increasingly tedious with progressing re-

duction in the layer symmetry.

For virtually all cases of interest �comprising the main

layer orientations in orthorhombic, tetragonal, hexagonal,

and, particularly, in cubic crystals as listed in Table I� it is,

however, sufficient and simpler to evaluate Eq. �4� for an

effectively orthorhombic system with lattice vectors a , b , c

in the properly chosen base and pole axis directions 1, 2, 3,

of the original lattice, for instance, a→ �110�, b→ �112�, c

→ �111� for �111�-layers in cubic crystals considered in col-

umn 5 of Table I. Even though such layers have only

trigonal/monoclinic symmetry, the distribution of their crys-

tal directions, irrespective of their type, is “pseudo-

orthorhombic” as demonstrated by the stereographic projec-

tion shown in Fig. 4�c�. For the strain induced change in the

angle between the pole direction �001� and the direction

�111� in an orthorhombic layer of lattice constants a, b, c,

Eq. �4a� yields �apostrophes neglected for simplicity�:

�a2 + b2 + c2���a2 + b2
/c��111 = a2�11 + b2�22 + 2ab�12

− �a2 + b2���33 + 2�a�13 + b�23�/c� . �5�

Since, for angles between directions, the reference direction

is always the pole, the latter need not be included in the

labeling of the angle change, here in �111. Analogous expres-

sions for other angle changes are obtained from Eq. �5� by

properly choosing a, b, and c�0. Directions in the pseudo-

orthorhombic layer system may easily be expressed in terms

of directions in the underlying crystal lattice system by sim-

ply summing base and pole vectors properly, for instance

�101��= �110�+ �111�= �201� for the �111�-layer system.

Examination of changes in angles between the pole di-

rection and two pairs of directions with projections parallel

to the two base axes, for instance, allows to determine the

two diagonal elements, �11,22� −�33� , and the two off-diagonal

shear elements, �13� , �23� in the orthorhombic coordinate sys-

tem. Choosing the low index directions �101�� and �101��,
we find:

2��11� − �33� � � �a/c + c/a���101� + �
1̄01
� � , �6a�

4�13� � − �1 + c2
/a2���101� − �

1̄01
� � , �6b�

The results for �22� −�33� and �23� follow from Eqs. �6a� and

�6b�, respectively, by proper exchanging coordinates and pa-

rameters. Note that the apostrophes labeling the �’s at the

right hand sides of Eqs. �6a� and �6b� refer only to the form

of indexing the directions but not to the values of the angle

changes, since these are invariant against coordinate rota-

tions. The other off-diagonal shear element �12� can only be

determined by examining angle changes for directions out of

the planes perpendicular to base vectors a , b, for instance

for �111�� type directions in the orthorhombic system.

Recommendations for appropriate choices of directions

in different cubic lattice based layer types are listed in Table

I together with the corresponding relations between angle

changes and component of the deviatory part of the strain

tensor. The main criterion for these choices is to minimize

the error in the strain tensor components to be deduced: on

one hand, the channeling direction should be of low index

type; on the other, the angle � to the pole direction should be

small as can be seen from Eq. �4a�. According to columns 2

to 5/last five lines of Table I, at least two independent angle

changes are required to determine one strain component. The

factors in front of the pairs of angle changes are close to 1

for the main components and somewhat lower �between 1/2

and 3/4� for the nondiagonal components �13� and �23� . For an

accuracy of about 0.042° in determining changes in angles

TABLE I. Layer type, symmetry, appropriate orthorhombic lattice vectors, a , b , c, direction vectors in the orthorhombic base planes, �010�� and �100��,
�101�� , �1̄01�, and �011�� , �01̄1��, and out of that planes, �hkl�� , �h̄kl�, suited to relate the strain tensor components in the orthorhombic coordinate system, �ij�,

to changes in the angle between the pole direction and other directions �hkl�, �hkl; the angle changes are indexed according to the underlying cubic crystals

considered here. Since, for angles between directions, the reference direction is always the pole, this need not be included in the labeling of the angle change.

Note that the relations for �12� are restricted to �13� =�13� =0. For the more general case, angle changes for the directions following from reflection at the

�010��-plane are needed in addition �angles in radians�.

Layer type �001� �110�-S on �001� �011� �111�
Symmetry Tetragonal Orthorhombic Orthorhombic Trigonal/monoclinic

Base vectors, a, b

pole vector c �100�,�010�, �001� �110� , �1̄10�, �001� �100� , �011̄�, �011� �11̄0� , �112̄�, �111�
a ,b ,c 1, 1, 1 �2, �2,1 1 , �2, �2 �2, �6, �3

�101�� , �1̄01�� �101� , �1̄01� �111� , �1̄1̄1� �111� , �1̄11� �201�,�021�

�011�� , �01̄1�� �011� , �01̄1� �1̄11� , �11̄1� �010�,�001� �221̄� , �001�

�hkl�� , �h̄kl�� �111� , �1̄11� �011� , �1̄01� �110� , �1̄10� �100�,�010�
�11� −�33�

�13� �=0?�
�101+�1̄01

��1̄01−�101� /2

�3 /�8���111+�1̄1̄1�
�3 /8���1̄1̄1−�111�

�3 /�8���111+�1̄11�
�3 /4���1̄11−�111�

�5 /�24���201+�021�
�5 /8���021−�201�

�22� −�33�

�23� �=0?�
�011+�01̄1

��01̄1−�011� /2

�3 /�8���1̄11+�11̄1�
�3 /8���11̄1−�1̄11�

�010+�001

��001−�010� /2

�3 /�8���221̄+�001�
�3 /8���001−�221̄�

�12� �3 /�8���111−�1̄11� �011−�1̄01
�3 /2��110−�1̄10� �3 /2��100−�010�
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between two directions, this implies uncertainties in deter-

mining certain strain component of about 0.1% strain for the

main components and somewhat smaller uncertainties for �13�

and �23� .

The simplest way to derive the two shear components of

the strain tensor parallel to the layer plane, represented by

�12� and �11� −�22� , is to apply Eqs. �4a� and �4b� to the two

orthogonal base planes �010�� , �1̄00�� and �010� , �1̄00�, and

to two pairs of nonorthogonal �channeling� planes perpen-

dicular to the layer plane, respectively. Results for different

layer types are compiled in Table II. The accuracy in deter-

mining strain induced changes of angles between two chan-

neling planes is, however, significantly lower than for

changes of angles between directions, say by a factor of 2,

which would correspond to an increase in the uncertainty of

strain components from 0.1% to 0.2%.

B. Boundary conditions for perfect surfaces

The assumption of a force free layer surface implies van-

ishing of the two shear stress components along the surface

and the stress components normal to it �see, for instance,

Ref. 18�. For perfect surfaces with a crystallographic orien-

tation identical to that of the layer system, this means that,

in our nomenclature, �13� ���13� �, �23� ���23� �, and �33�

���11� ,�22� �, are zero. According to Table I, the conditions

�13� =�23� =0 imply the equality of the symmetric angle

changes involved, simplifying the associated relations for the

diagonal elements �11,22� −�33� of the strain tensor. Conse-

quently, if the crystallographic orientation of the surface of

the layer system is well established, only one angular chan-

neling yield scan is needed for determining one of each of

the diagonal elements �11,22� −�33� , for instance �101 and �101

for �001�-layers or �021 and �001 for �111�-layers, respec-

tively. Effects of systematic �long range or local� deviations

of the surface orientations from the layer orientation on the

strain components are discussed below.

For a layer system with a surface close to the nominal

crystallographic orientation, the information required to

complete the deviatory part of the strain tensor by a sixth

component is provided by the condition of vanishing normal

stress, �33� =0. In the framework of the elastic continuum

approach �which has been shown to be applicable even down

to SiGe layers consisting only of a few atomic monolayers
1�

this yields a Poisson type relation between the normal and

parallel strain components �33� and �11� , �22�

�33� = − �	1�11� + 	2�22� � �7a�

with 	1 = C13� /C33� and 	2 = C23� /C33� . �7b�

In Eq. �7b�, C13� , C23� , and C33� are the appropriate elastic

constants, in the Voigt notation, of the layer system consid-

ered. For cubic base symmetry assumed in the present paper,

the elastic constant matrix may be expressed by the Voigt

elastic constants, C11, C12, C44, as

Cijkl = C12�ij�kl + C44��ik� jl + �il� jk�

+ �C11 − C12 − 2C44��ijkl, �8�

where the twice indexed quantity, �ij =1 for i= j, �ij =0 for

i� j, is the common Kronecker-delta, and �ijkl=1 for i= j

=k= l and �ijkl=0, otherwise. Note, that C11−C12−2C44=0

for elastic isotropy.

The elastic constant matrix of a orthorhombic layer is

obtained from that of the cubic base described by Eq. �8� by

applying the transformation matrix formed by the three unit

vectors in the orthorhombic coordinate directions as given in

Table I �for such transformations see also Ref. 18�. The result

of this procedure may be expressed in the form

C� = C + �C11 − C12 − 2C44�S�u,v�

with S = 
i
ui

2
vi

2
/�uv�2 �9�

The left hand side of Eq. �9�, C�, represents the orthorhombic

elastic constants, the right hand side the pertinent linear com-

bination of the associated cubic elastic constants, in which

each factor S�u ,v� contains the squares of two properly se-

lected members out of the three orthorhombic lattice vectors.

In detail, C=C12+2C44, and u=v=a ,b ,c for

C11� , C22� , C33� ; C=C12, and �u ,v�= �a ,b� , �a ,c� , �b ,c� for

C12� , C13� , C23� ; C=C44, and �u ,v�= �b ,c� , �a ,c� , �a ,b�, for

C44� , C55� , C66� , respectively. To give an example, we con-

sider C66� for the �111� layer defined in column 5 of Table I:

with the lattice vectors a= �110� and b= �112�, S�a ,b�= �1
+1+0� /12=1 /6 resulting in C66� = �C11−C12+4C44� /6.

We are here first of all interested in the two components

of the biaxial Poisson ratio, 	1 and 	2. For layer systems with

TABLE II. Layer type, orthorhombic base lattice constants, a, b, orthorhombic base and appropriate nonbase

planes, �010��, �1̄00��, and �1̄10��, suited to determine the strain tensor components in the orthorhombic base

system, �12� and �11� −�22� , respectively, as a function of changes in the angles between that planes, which are

indexed according to the underlying cubic crystals considered here. Since there is no distinct reference plane,

the indices of both planes must be included in denoting the angles between planes. Note that the sequence of the

planes �010��, �1̄10��, �1̄00�� and the angles between the first and the two following are chosen to be counter

clockwise.

Layer type �001� �011� �111�

a, b 1,1 1 , �2 �2, �6

�010�� , �1̄00�� �010� , �1̄00� �011̄� , �1̄00� �112̄� , �1̄10�

�1̄10�� �1̄10� �1̄11̄� �011̄�
2�12� �010,1̄00 �011̄,1̄00 �112̄,1̄10

�11� −�22� 2�010,1̄10−2�12 �3 /�2��011̄,1̄11̄−�2�12 �4 /�3��112̄,011̄−�12 /�3
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high rotational symmetry above twofold �e.g., tetragonal,

trigonal as in columns 2, 3, and 5 in Table I� S�a ,c�
=S�b ,c� implying C13� =C23� and, according to Eq. �7b�, 	1

=	2. In less symmetric cases, the two components of the

biaxial Poisson ratio must be considered in general unequal,

	1�	2. For �011� layer systems on a cubic substrate �column

4 in Table I�, for instance, S�a ,c�=0, and S�b ,c�=S�c ,c�
=1 /2 yield C13� =C12 , C23� = �C11+C12−2C44� /2, C33� = �C11

+C12+2C44� /2 and consequently 	1=2C12 / �C11+C12

+2C44� and 	2= �C11+C12−2C44� / �C11+C12+2C44�.
Abbreviating the relations between the diagonal ele-

ments of the deviatory strain tensor and the corresponding

angle changes given in Table I as �11,22� −�33� �e1,2 and using

Eq. �6a� for eliminating �33� we may write �11,22� as

�11� = ��1 + 	2�e1 − 	2e2�/�1 + 	1 + 	2� , �10a�

�22� = ��1 + 	1�e2 − 	1e1�/�1 + 	1 + 	2� , �10b�

C. Boundary conditions for misoriented
surfaces

So far, we have assumed that the crystallographic orien-

tations of the layer system and the surface are identical. This

is, however, not necessarily realized in practical cases. Con-

ceivable are large scale misorientations �over the millimeter

scale of the He bombarded area� and medium-scale misori-

entations �over scales small compared to the bombarded area

but large compared to the thickness of the layer; for instance

asymmetric saw tooth shaped misorientations formed as a

result of directed cutting or grinding�. Such deviations in the

surface from the ideal case may be undesired or intentional

�for instance to support crystal growth by regular arrays of

surface steps�.
Any type of misorientation of the surface must be con-

sidered to affect the nominal boundary conditions, i.e., to

induce finite values of the involved strain components, �13� ,

�23� , and �33� �note that �13� and �23� do not represent direct

measures of the surface inclination�. In the following, we

derive relations between these strain components and the tilt

of surface of the orthorhombic layer, the magnitude and ori-

entation of which we describe by a rotation of the original to

a surface adapted coordinate system �denoted by �� accord-

ing to Euler angles for “nutation” �tilting�, “precession” �di-

rection of tilting�, and “intrinsic rotation,” �, 
, and �, re-

spectively, choosing �=−
 to guarantee the formal x-y

exchange symmetry. For expected small tilt angle, ��1, the

corresponding rotation matrix, M�� ,
� may linearized with

respect � resulting in

M��,
� � 	
1 0 
1

0 1 
2

− 
1 − 
2 1

 , �11�

where 
1=−� sin 
 and 
2=� cos 
 have been introduced as

the two components of the surface gradient. Applying this

approximate rotation matrix to the stress tensor in the origi-

nal coordinate system of the orthorhombic layer and select-

ing the relevant stress components vanishing at the inclined

surface, �13
� =�23

� =�33
� =0, we find the relations

�13 � 
1��11 − �33� + 
2�12 � 
1�11 + 
2�12, �12a�

�23 � 
2��22 − �33� + 
1�12 � 
2�22 + 
1�12, �12b�

�33 � 2
1�13 + 2
2�23 = 0�
1
2,
2

2� . �12c�

Using �13 and �23 as given by Eqs. �12a� and �12b� in Eq.

�12c� we see that the misorientation induced change in the

boundary condition for stress components normal to the

nominal surface, �33, is of second order in 
1,2 and has,

therefore, to be neglected consistently within our linear ap-

proximation. An important consequence of this is that �33

�0 and, with this, Eqs. �7� and �10� remain very good ap-

proximations for moderately misoriented surfaces.

In the context of strain measurements by RBS/C dis-

cussed in this paper, it is useful to relate in Eqs. �12a� and

�12b� the stress to the strain components. It is sufficient to

consider Eq. �12a� for 
2=0 resulting in the relation

�13 � 
1��C11� − C13� ��11 + �C12� − C23� ��22�/C55� � 2
1�11

� 2
1�11 for elastic isotropy. �13�

An analogous relation holds for �23.

According to Eq. �13�, the value of �13 is below the

resolution limit of RBS/C of about 0.05% for �11,22 of about

1% and 
1,2�2.5% �in radians� corresponding to an inclina-

tion of about 1.5°. An important conclusion of this is that the

shear stress components �13,23 can be safely neglected if

some information guarantees that large or medium scale mi-

sorientations are below the commonly assumed upper limit

of about 1°.

D. Orthorhombic strain tensors

An important limiting case is realized when RBS/C mea-

surements have established that the in-plane shear stress �12�

vanishes �or is negligible�, showing that the symmetry of the

strain tensor corresponds to the intrinsic symmetry of the

layer system. In this case, the diagonal elements define the

eigenvalues of the strain tensor, �1=�11� ,�2=�22� . These are

equal for epitaxial �pseudomorphic� layers but must be con-

sidered to be different for asymmetrically relaxed layers.

Asymmetrical layer relaxation may occur by asymmetrical

�biased� activation of dislocation slip systems in layers of

reduced symmetry, for instance by a restriction of the glide

of dislocations with �110� /2 Burgers vectors to �111� and

�1̄11� planes in �011�-layers. According to Eqs. �10a� and

�10b�, the degrees of relaxation in the tangential directions 1�

and 2� of a layer may be written as:

R1,2 = 1 − �1,2/�0

= 1 − ��1 + 	2,1�e1,2 − 	2,1e2,1�/��0�1 + 	1 + 	2�� ,

�14�

where �0 is the extreme value of the strain defined by perfect

epitaxial connection between the layers and the substrate

��0=−0.0417x in the case of Si1−xGex�0�. In strain engineer-

ing of nanoelectronic devices, the asymmetric relaxation de-

grees R1,2 are the key quantities to be determined by RBS/C.
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E. Application to strain relaxation in ˆ110‰ oriented
SiGe layers

As mentioned in the introduction, asymmetric strain re-

laxation in SiGe layers on Si is desirable for engineering

strain states favoring high carrier mobilities. This can only be

achieved by reducing the tetragonal symmetry of the com-

monly used �100�SiGe/Si layers. Asymmetric strain relax-

ation in orthorhombic �110�SiGe/Si layers has been recently

investigated by RBS/C using the results of the present study

to evaluate the RBS/C data.
16

For this specific case, we may use the results given in

column 4 of Table I in conjunction with Eq. �10�. In Ref. 16,

we have tacitly assumed a perfect surface with a nominal

orientation equal to the �110� orientation of the layer. In this

case, �13� =�23� =0 meaning �111=�−111 , �010=�001, and, ac-

cording to Eqs. �10a� and �10b�

�11� � ��3/ � 2��1 + 	2��111 − 2	2�010�/�1 + 	1 + 	2� ,

�15a�

�22� � �2�1 + 	1��010 − �3/ � 2�	1�111�/�1 + 	1 + 	2� ,

�15b�

where 	1=0.329 and 	2=0.181 for �011�SiGe layers. Accord-

ing to Table I and II, the in-plane nondiagonal element �12� is

given in terms of angle changes between directions and

planes, respectively, as

�12� �directions� � � �3/2���110 − �−110� , �16a�

�12� �planes� � �011̄,1̄00/2 �16b�

When RBS/C measurements yield, within the experimental

accuracy, �12� �0, the strain tensor may be considered to have

the orthorhombic symmetry of the layer, with generally two

different eigenvalues �1,2=�11,22� , which can be used to define

two different degrees of relaxation R1,2=1−�1,2 /�0 where

�0=−0.0417x for Si1−xGex.

In the following, we briefly report on the evaluation of

data sets for RBS/C measurements on 50 nm thick

�011�Si0.833Ge0.167 /Si samples ��0=0.70%� before and after

relaxation by He implantation and subsequent annealing.

For the as grown sample, �111=−0.26° �0.04°, �010

=−0.25° �0.04°, resulting with Eqs. �15a� and �15b� in �11�

=�1= �0.70�0.16�%, �22� =�2= �0.63�0.15�% correspond-

ing to R1= �0�0.2�, R2= �0.10�0.2�, respectively. Thus, the

as grown layer system is almost pseudomorphic. Implanta-

tion of 10 keV He ions to a dose of 7�1015
/cm2 and sub-

sequent annealing changes the data set to �111=

−0.09° �0.04°, �010

=−0.246° �0.04°, �1= �0.25�0.16�%, �2= �0.63�0.15�%
corresponding to R1=0.64�0.2, R2=0.10�0.2. This change

shows that the treatment has induced a purely uniaxial relax-

ation of the �011�SiGe layer in the �100�-direction which

may be interpreted as a restriction of the glide of dislocations

with �110� /2 Burgers vectors on �111� and �1̄11� planes to

the �011̄�-direction.
16

The errors given are with the reserva-

tion that the examined layers are fully orthorhombic includ-

ing the surface, i.e., that �12� =0 as well as �13� =�23� =0. Ac-

cording to Sec. II C, the latter condition can be considered to

be fulfilled within the experimental accuracy if the medium

and large scale surface misorientations are shown to be be-

low 2.5°.

We can check the latter assumption by examining five

independent direction changes necessary to deduce the com-

plete deviatory part of the strain tensor. The highest accuracy

would be obtained by choosing the directions recommended

in Table I. This would require, however, a rotation of the

sample in the RBS equipment by 180° to obtain two of the

recommended five direction changes. To avoid this, we have

examined the changes in the angles between the pole direc-

tion �011� and the directions �010�, �110�, �111�, �101�, and

�001�. By solving the proper set of equations of the type of

Eq. �5�, the five required strain components can be deduced

from the five measured angle changes. We give, as an ex-

ample, the results for the strain components �in percent� for

an as grownSi0.838Ge0.162 /Si sample �with �0=−0.68%�

�11� = − �0.70 � 0.26�%, �22� = − �0.50 � 0.15�%,

�12� = − �0.014 � 0.17�%,

�13� = − �0.10 � 0.10�%, �23� = − �0.0026 � 0.06�%.

Within the given errors �again based on an error of �0.03° in

determining a certain direction� the nondiagonal components

of the strain tensor �12� and �23� are clearly zero; only for �13� ,

a finite value cannot be fully ruled out which would indicate

some medium or large scale surface gradient in �100� direc-

tion �note that our convenience of avoiding large angle

sample rotations results in an increased error in �11� since, for

this, five angle measurements are required�. The uncertainty

in �13� underlines the importance of using information on a

possible �local� surface misorientation in conjunction with

our analysis of the relation between this and the nondiagonal

components of the strain tensor �13� and �23� .

III. CONCLUSIONS

We have presented a systematic derivation of relations

between changes in angles between channeling crystal direc-

tions and components of the strain tensor for general crystal-

line layer systems of reduced symmetry compared to the ba-

sic �cubic� crystal. The simplest method to derive such

relations, applicable to practically all cases of interest, is to

describe the layer systems as appropriately chosen pseudo-

orthorhombic systems. For important layer types, choices of

crystal directions most suited to minimize the error in the

deduced strain tensor are suggested. We have discussed the

effects of possible medium or large scale surface misorienta-

tions on the commonly assumed boundary conditions and the

associated strain tensor components. A possible asymmetry

in the principal axes components of the strain tensor for lay-

ers of low symmetry is attributed to asymmetric strain relax-

ation resulting from a restriction in the slip system of the

dislocations inducing the relaxation. Our results are consid-

ered to support the use of RBS/C for controlling and charac-

terizing advanced strain engineering in Si/SiGe layer sys-
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tems. To illustrate the method we have applied the results to

strain relaxation in �110� oriented SiGe layers.
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