000011378 001__ 11378
000011378 005__ 20180208233545.0
000011378 0247_ $$2DOI$$a10.1002/hyp.7688
000011378 0247_ $$2WOS$$aWOS:000280140700011
000011378 037__ $$aPreJuSER-11378
000011378 041__ $$aeng
000011378 082__ $$a550
000011378 084__ $$2WoS$$aWater Resources
000011378 1001_ $$0P:(DE-HGF)0$$aSteelman, C.M.$$b0
000011378 245__ $$aField observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar
000011378 260__ $$aNew York, NY$$bWiley$$c2010
000011378 300__ $$a2022 - 2033
000011378 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011378 3367_ $$2DataCite$$aOutput Types/Journal article
000011378 3367_ $$00$$2EndNote$$aJournal Article
000011378 3367_ $$2BibTeX$$aARTICLE
000011378 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011378 3367_ $$2DRIVER$$aarticle
000011378 440_0 $$09082$$aHydrological Processes$$v24$$x0885-6087$$y14
000011378 500__ $$aRecord converted from VDB: 12.11.2012
000011378 520__ $$aWe have used reflection profiles and common-midpoint (CMP) soundings with 900 MHz ground-penetrating radar (GPR) to monitor freezing and thawing processes during winter seasonal periods at two separate sites located in Ontario, Canada. GPR responds to the large contrast in dielectric permittivity between liquid water and ice. The profiles reveal the long-term development of a very shallow (<0.5 m) soil frost zone overlying unfrozen wet substratum. During the course of the winter season, long-term travel time analysis yielded physical properties of the frozen and unfrozen layers as well as the spatial distribution of the base of the soil frost zone. Short-term shallow thawing events overlying frozen substratum formed a dispersive waveguide for both the CMP and reflection profile surveys. Inversion of the dispersive wavefields for the CMP data yielded physical property estimates for the thawed and frozen soils and thawed layer thickness. We have shown that GPR can be used to monitor very shallow freezing and thawing events by responding to changes in the relative dielectric permittivity of the soil water phase (e. g. liquid water vs ice). The non-invasive collection of such data permits interpretation of dynamic temporal and spatial freeze-thaw events, which are important for characterizing a range of hydrological processes. Copyright (C) 2010 John Wiley & Sons, Ltd.
000011378 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000011378 588__ $$aDataset connected to Web of Science
000011378 650_7 $$2WoSType$$aJ
000011378 65320 $$2Author$$aground-penetrating radar
000011378 65320 $$2Author$$aseasonal freeze and thaw
000011378 65320 $$2Author$$athermal interface
000011378 65320 $$2Author$$adispersive waveguide
000011378 7001_ $$0P:(DE-HGF)0$$aEndres, A.L.$$b1
000011378 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, J.$$b2$$uFZJ
000011378 773__ $$0PERI:(DE-600)1479953-4$$a10.1002/hyp.7688$$gp. 2022 - 2033$$p2022 - 2033$$q2022 - 2033$$tHydrological processes$$x0885-6087$$y2010
000011378 8567_ $$uhttp://dx.doi.org/10.1002/hyp.7688
000011378 909CO $$ooai:juser.fz-juelich.de:11378$$pVDB
000011378 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000011378 9141_ $$y2010
000011378 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011378 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000011378 970__ $$aVDB:(DE-Juel1)122443
000011378 980__ $$aVDB
000011378 980__ $$aConvertedRecord
000011378 980__ $$ajournal
000011378 980__ $$aI:(DE-Juel1)IBG-3-20101118
000011378 980__ $$aUNRESTRICTED
000011378 981__ $$aI:(DE-Juel1)IBG-3-20101118