001     11378
005     20180208233545.0
024 7 _ |2 DOI
|a 10.1002/hyp.7688
024 7 _ |2 WOS
|a WOS:000280140700011
037 _ _ |a PreJuSER-11378
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Steelman, C.M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar
260 _ _ |a New York, NY
|b Wiley
|c 2010
300 _ _ |a 2022 - 2033
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Hydrological Processes
|x 0885-6087
|0 9082
|y 14
|v 24
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We have used reflection profiles and common-midpoint (CMP) soundings with 900 MHz ground-penetrating radar (GPR) to monitor freezing and thawing processes during winter seasonal periods at two separate sites located in Ontario, Canada. GPR responds to the large contrast in dielectric permittivity between liquid water and ice. The profiles reveal the long-term development of a very shallow (<0.5 m) soil frost zone overlying unfrozen wet substratum. During the course of the winter season, long-term travel time analysis yielded physical properties of the frozen and unfrozen layers as well as the spatial distribution of the base of the soil frost zone. Short-term shallow thawing events overlying frozen substratum formed a dispersive waveguide for both the CMP and reflection profile surveys. Inversion of the dispersive wavefields for the CMP data yielded physical property estimates for the thawed and frozen soils and thawed layer thickness. We have shown that GPR can be used to monitor very shallow freezing and thawing events by responding to changes in the relative dielectric permittivity of the soil water phase (e. g. liquid water vs ice). The non-invasive collection of such data permits interpretation of dynamic temporal and spatial freeze-thaw events, which are important for characterizing a range of hydrological processes. Copyright (C) 2010 John Wiley & Sons, Ltd.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a ground-penetrating radar
653 2 0 |2 Author
|a seasonal freeze and thaw
653 2 0 |2 Author
|a thermal interface
653 2 0 |2 Author
|a dispersive waveguide
700 1 _ |a Endres, A.L.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a van der Kruk, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)129561
773 _ _ |a 10.1002/hyp.7688
|g p. 2022 - 2033
|p 2022 - 2033
|q 2022 - 2033
|0 PERI:(DE-600)1479953-4
|t Hydrological processes
|y 2010
|x 0885-6087
856 7 _ |u http://dx.doi.org/10.1002/hyp.7688
909 C O |o oai:juser.fz-juelich.de:11378
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
970 _ _ |a VDB:(DE-Juel1)122443
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21