000001141 001__ 1141
000001141 005__ 20240712100842.0
000001141 0247_ $$2DOI$$a10.1029/2008JD011214
000001141 0247_ $$2WOS$$aWOS:000265667300006
000001141 0247_ $$2ISSN$$a0141-8637
000001141 0247_ $$2Handle$$a2128/20382
000001141 037__ $$aPreJuSER-1141
000001141 041__ $$aeng
000001141 082__ $$a550
000001141 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000001141 1001_ $$0P:(DE-Juel1)VDB12001$$aPreusse, P.$$b0$$uFZJ
000001141 245__ $$aGlobal ray tracing simulations of the SABER gravity wave climatology
000001141 260__ $$aWashington, DC$$bUnion$$c2009
000001141 300__ $$aD08126
000001141 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000001141 3367_ $$2DataCite$$aOutput Types/Journal article
000001141 3367_ $$00$$2EndNote$$aJournal Article
000001141 3367_ $$2BibTeX$$aARTICLE
000001141 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000001141 3367_ $$2DRIVER$$aarticle
000001141 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v114$$x0148-0227
000001141 500__ $$aJens Oberheide is supported by DFG CAWSES grant OB 299/2-2. Part of the work of Manfred Ern was supported by DFG CAWSES grant ER 474/1-1. Richard H. Picard acknowledges support from NASA SABER Program Office and Dr. Kent Miller of U.S. Air Force Office of Scientific Research. We thank three anonymous reviewers for their helpful comments on the determination of the intermittency factors, discussions, and data presentation.
000001141 520__ $$aSince February 2002, the SABER (sounding of the atmosphere using broadband emission radiometry) satellite instrument has measured temperatures throughout the entire middle atmosphere. Employing the same techniques as previously used for CRISTA (cryogenic infrared spectrometers and telescopes for the atmosphere), we deduce from SABER V1.06 data 5 years of gravity wave (GW) temperature variances from altitudes of 20 to 100 km. A typical annual cycle is presented by calculating averages for the individual calendar months. Findings are consistent with previous results from various satellite missions. Based on zonal mean, SABER data for July and zonal mean GW momentum flux from CRISTA, a homogeneous and isotropic launch distribution for the GROGRAT (gravity wave regional or global ray tracer) is tuned. The launch distribution contains different phase speed mesoscale waves, some of very high-phase speed and extremely low amplitudes, as well as waves with horizontal wavelengths of several thousand kilometers. Global maps for different seasons and altitudes, as well as time series of zonal mean GW squared amplitudes based on this launch distribution, match the observations well. Based on this realistic observation-tuned model run, we calculate quantities that cannot be measured directly and are speculated to be major sources of uncertainty in current GW parameterization schemes. Two examples presented in this paper are the average cross-latitude propagation of GWs and the relative acceleration contributions provided by saturation and dissipation, on the one hand, and the horizontal refraction of GWs by horizontal gradients of the mean flow, on the other hand.
000001141 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000001141 588__ $$aDataset connected to Web of Science
000001141 650_7 $$2WoSType$$aJ
000001141 7001_ $$0P:(DE-HGF)0$$aEckermann, D.S.$$b1
000001141 7001_ $$0P:(DE-Juel1)VDB13497$$aErn, M.$$b2$$uFZJ
000001141 7001_ $$0P:(DE-HGF)0$$aOberheide, J.$$b3
000001141 7001_ $$0P:(DE-HGF)0$$aPicard, R.H.$$b4
000001141 7001_ $$0P:(DE-HGF)0$$aRoble, R.G.$$b5
000001141 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b6$$uFZJ
000001141 7001_ $$0P:(DE-HGF)0$$aRussell III, J.M.$$b7
000001141 7001_ $$0P:(DE-HGF)0$$aMlynczak, M.G.$$b8
000001141 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2008JD011214$$gVol. 114, p. D08126$$pD08126$$q114<D08126$$tJournal of geophysical research / Atmospheres$$tJournal of Geophysical Research$$v114$$x0148-0227$$y2009
000001141 8567_ $$uhttp://dx.doi.org/10.1029/2008JD011214
000001141 8564_ $$uhttps://juser.fz-juelich.de/record/1141/files/2008JD011214.pdf$$yOpenAccess
000001141 8564_ $$uhttps://juser.fz-juelich.de/record/1141/files/2008JD011214.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000001141 909CO $$ooai:juser.fz-juelich.de:1141$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000001141 9141_ $$y2009
000001141 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000001141 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000001141 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000001141 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000001141 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000001141 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000001141 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000001141 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000001141 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000001141 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000001141 970__ $$aVDB:(DE-Juel1)102064
000001141 9801_ $$aFullTexts
000001141 980__ $$aVDB
000001141 980__ $$aConvertedRecord
000001141 980__ $$ajournal
000001141 980__ $$aI:(DE-Juel1)IEK-7-20101013
000001141 980__ $$aI:(DE-82)080012_20140620
000001141 980__ $$aUNRESTRICTED
000001141 981__ $$aI:(DE-Juel1)ICE-4-20101013
000001141 981__ $$aI:(DE-Juel1)IEK-7-20101013
000001141 981__ $$aI:(DE-Juel1)VDB1346