000001143 001__ 1143
000001143 005__ 20240712100910.0
000001143 0247_ $$2WOS$$aWOS:000257516800017
000001143 0247_ $$2Handle$$a2128/10180
000001143 037__ $$aPreJuSER-1143
000001143 041__ $$aeng
000001143 082__ $$a550
000001143 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000001143 1001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b0$$uFZJ
000001143 245__ $$aQuantification of Transport across the Boundary of the Lower Stratospheric Vortex during Arctic Winter 2002/2003
000001143 260__ $$aKatlenburg-Lindau$$bEGU$$c2008
000001143 300__ $$a3655 - 3670
000001143 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000001143 3367_ $$2DataCite$$aOutput Types/Journal article
000001143 3367_ $$00$$2EndNote$$aJournal Article
000001143 3367_ $$2BibTeX$$aARTICLE
000001143 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000001143 3367_ $$2DRIVER$$aarticle
000001143 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v8$$x1680-7316
000001143 500__ $$aThe authors would like to thank the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the meteorological data, and N. Spelten, N. Thomas and R. Bauer for excellent support with data handling and programming.
000001143 520__ $$aStrong perturbations of the Arctic stratosphere during the winter 2002/2003 by planetary waves led to enhanced stretching and folding of the vortex. On two occasions the vortex in the lower stratosphere split into two secondary vortices that re-merged after some days. As a result of these strong disturbances the role of transport in and out of the vortex was stronger than usual. An advection and mixing simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS) utilising a suite of inert tracers tagging the original position of the air masses has been carried out. The results show a variety of synoptic and small scale features in the vicinity of the vortex boundary, especially long filaments peeling off the vortex edge and being slowly mixed into the mid latitude environment. The vortex folding events, followed by re-merging of different parts of the vortex led to strong filamentation of the vortex interior. During January, February, and March 2003 flights of the Russian high-altitude aircraft Geophysica were performed in order to probe the vortex. filaments and in one case the merging zone between the secondary vortices. Comparisons between CLaMS results and observations obtained from the Geophysica flights show in general good agreement.Several areas affected by both transport and strong mixing could be identified, allowing explanation of many of the structures observed during the flights. Furthermore, the CLaMS simulations allow for a quantification of the air mass exchange between mid latitudes and the vortex interior. The simulation suggests that after the formation of the vortex was completed, its interior remaind relativel undisturbed. Only during the two re-merging events were substantial amounts of extra-vortex air transported into the polar vortex. When in March the vortex starts weakening additional influence from lower latitudes becomes apparent in the model results.
000001143 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000001143 588__ $$aDataset connected to Web of Science
000001143 650_7 $$2WoSType$$aJ
000001143 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b1$$uFZJ
000001143 7001_ $$0P:(DE-Juel1)VDB14301$$avon Hobe, M.$$b2$$uFZJ
000001143 7001_ $$0P:(DE-Juel1)129158$$aStroh, F.$$b3$$uFZJ
000001143 7001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b4$$uFZJ
000001143 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b5
000001143 773__ $$0PERI:(DE-600)2069847-1$$gVol. 8, p. 3655 - 3670$$p3655 - 3670$$q8<3655 - 3670$$tAtmospheric chemistry and physics$$v8$$x1680-7316$$y2008
000001143 8564_ $$uhttps://juser.fz-juelich.de/record/1143/files/acp-8-3655-2008.pdf$$yOpenAccess
000001143 8564_ $$uhttps://juser.fz-juelich.de/record/1143/files/acp-8-3655-2008.gif?subformat=icon$$xicon$$yOpenAccess
000001143 8564_ $$uhttps://juser.fz-juelich.de/record/1143/files/acp-8-3655-2008.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000001143 8564_ $$uhttps://juser.fz-juelich.de/record/1143/files/acp-8-3655-2008.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000001143 8564_ $$uhttps://juser.fz-juelich.de/record/1143/files/acp-8-3655-2008.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000001143 909CO $$ooai:juser.fz-juelich.de:1143$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000001143 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000001143 9141_ $$y2008
000001143 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000001143 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000001143 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000001143 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000001143 970__ $$aVDB:(DE-Juel1)102067
000001143 9801_ $$aUNRESTRICTED
000001143 9801_ $$aFullTexts
000001143 980__ $$aVDB
000001143 980__ $$aConvertedRecord
000001143 980__ $$ajournal
000001143 980__ $$aI:(DE-Juel1)IEK-7-20101013
000001143 980__ $$aUNRESTRICTED
000001143 981__ $$aI:(DE-Juel1)ICE-4-20101013
000001143 981__ $$aI:(DE-Juel1)IEK-7-20101013