001     11443
005     20240708133704.0
024 7 _ |2 pmid
|a pmid:17645476
024 7 _ |2 DOI
|a 10.1117/12.854560
024 7 _ |2 WOS
|a WOS:000285181500018
037 _ _ |a PreJuSER-11443
041 _ _ |a eng
100 1 _ |a Schulte, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)2402
245 _ _ |a Ray tracing analysis of light scattering properties of randomly nano-textured ZnO films
260 _ _ |c 2010
300 _ _ |a 77170N
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a SPIE Newsroom
|x 1818-2259
|0 15562
|v 7717
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We investigate the scattering behavior of nano-textured ZnO-Air and ZnO-Silicon interfaces for the application in thin film silicon solar cells. Contrary to the common approach, the numerical solution of the Maxwell's equations, we introduce a ray tracing approach based on geometric optics and the measured interface topography. The validity of this model is discussed by means of SNOM measurements and numerical solutions of the Maxwell's equations. We show, that the ray tracing model can qualitatively describe the formation of micro lenses, which are the dominant feature of the local scattering properties of the investigated interfaces. A quantitative analysis for the ZnO-Silicon interface at lambda=488 nm shows that the ray tracing model corresponds well to the numerical solution of the Maxwell's equations. At lambda=780 nm, a good agreement up to distance of approximately 1.5 mu m from the topography minimum is achieved. The reduced effective wavelength in silicon leads to a better description of the ZnO-Silicon interface with respect to the ZnO-Air interface by the ray tracing model.
536 _ _ |a Erneuerbare Energien
|c P11
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK401
|x 0
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Hepatitis B, Chronic: complications
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Interleukin 1 Receptor Antagonist Protein: genetics
650 _ 2 |2 MeSH
|a Interleukin-10: genetics
650 _ 2 |2 MeSH
|a Interleukin-1beta: genetics
650 _ 2 |2 MeSH
|a Liver Cirrhosis: complications
650 _ 2 |2 MeSH
|a Liver Cirrhosis: genetics
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Polymorphism, Genetic
650 _ 2 |2 MeSH
|a Tumor Necrosis Factor-alpha: genetics
650 _ 7 |0 0
|2 NLM Chemicals
|a IL1RN protein, human
650 _ 7 |0 0
|2 NLM Chemicals
|a Interleukin 1 Receptor Antagonist Protein
650 _ 7 |0 0
|2 NLM Chemicals
|a Interleukin-1beta
650 _ 7 |0 0
|2 NLM Chemicals
|a Tumor Necrosis Factor-alpha
650 _ 7 |0 130068-27-8
|2 NLM Chemicals
|a Interleukin-10
700 1 _ |a Bittkau, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)130219
700 1 _ |a Pieters, B. P.
|b 2
|u FZJ
|0 P:(DE-Juel1)130284
700 1 _ |a Jorke, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB74616
700 1 _ |a Stiebig, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB5910
700 1 _ |a Hüpkes, J.
|b 5
|u FZJ
|0 P:(DE-Juel1)130252
700 1 _ |a Rau, U.
|b 6
|u FZJ
|0 P:(DE-Juel1)130285
773 _ _ |0 PERI:(DE-600)2619543-4
|a 10.1117/12.854560
|v 7717
|x 1818-2259
|y 2010
|t SPIE newsroom
856 7 _ |u http://dx.doi.org/10.1117/12.854560
909 C O |o oai:juser.fz-juelich.de:11443
|p VDB
913 1 _ |k P11
|v Erneuerbare Energien
|l Erneuerbare Energien
|b Energie
|0 G:(DE-Juel1)FUEK401
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
914 1 _ |y 2010
920 1 _ |k IEF-5
|l Photovoltaik
|d 30.09.2010
|g IEF
|0 I:(DE-Juel1)VDB813
|x 0
970 _ _ |a VDB:(DE-Juel1)122563
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-5-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21