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We consider an inextensible, semiflexible polymer or wormlike chain, with persistence length P and contour

length L, fluctuating in a cylindrical channel of diameter D. In the regime D� P�L, corresponding to a long,

tightly confined polymer, the average length of the channel �R�� occupied by the polymer and the mean-square

deviation from the average vary as �R��= �1−���D / P�2/3�L and ��R�
2�=���D

2
/ P�L, respectively, where �� and

�� are dimensionless amplitudes. In earlier work we determined �� and the analogous amplitude �� for a

channel with a rectangular cross section from simulations of very long chains. In this paper, we estimate �� and

�� from the simulations. The estimates are compared with exact analytical results for a semiflexible polymer

confined in the transverse direction by a parabolic potential instead of a channel and with a recent experiment.

For the parabolic confining potential we also obtain a simple analytic result for the distribution of R� or radial

distribution function, which is asymptotically exact for large L and has the skewed shape seen experimentally.
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I. INTRODUCTION

The statistical properties of biological polymers fluctuat-

ing in nano- or microchannels have been studied in several

recent experiments �1–8�. For biological polymers the persis-

tence lengths are typically tens of nanometers or even larger.

When the channel diameter is smaller than the persistence

length, the stiffness of the polymer plays an important role.

The polymer is stretched out in the channel with little back-

folding, and the length of the channel occupied by the poly-

mer is only slightly shorter than its contour length.

Measurements of the end-to-end distance of the polymer

in a channel and its fluctuations provide information on the

persistence and contour lengths of the polymer. This is of

interest in studies of DNA fragments, for example, where

sorting fragments of different length is desired, or in deter-

mining the change in bending rigidity upon binding of pro-

teins �9,10�.
In this paper, we consider the simplest model for a con-

fined biopolymer—an inextensible, semiflexible filament or

wormlike chain with persistence length P and contour length

L in a cylindrical channel of diameter D. Here D is an effec-

tive diameter, equal to twice the maximum transverse dis-

placement of the polymer from the symmetry axis of the

channel. For this system the distribution of the end-to-end

distance or radial distribution function has been calculated

theoretically �11,12�, with the channel replaced by a para-

bolic confining potential, and studied with simulations

�12,13�.
We will mainly consider the regime D� P�L, corre-

sponding to a long, tightly confined polymer. In this regime

the length of the channel R� occupied by the polymer is es-

sentially the same as the end-to-end distance. As discussed

below, the distribution of R� is Gaussian and is completely

determined by the mean value �R�� and the mean-square de-

viation ��R�
2�. These two quantities have simple scaling

properties, summarized in the next paragraph. Our goal has

been to determine the dimensionless proportionality con-

stants in the scaling forms with good precision, so that one

has unambiguous predictions for the wormlike chain that can

be compared with experimental data and used, for example,

to determine the persistence length.

In the regime D� P�L, the free energy per unit length of

confinement �f , the average length of the channel occupied

by the polymer, and the variance or mean-square deviation

from the average are given by

�f = A�

kBT

P1/3D2/3
, �1�

�R�� = �1 − ��	D

P

2/3�L , �2�

��R�
2� = ��

D2

P
L , �3�

as follows from scaling arguments of Odijk �14,15� and a

detailed microscopic analysis �16,17�. For a channel with a

rectangular cross section with edges Dx and Dy,

�f = A�

kBT

P1/3	 1

Dx
2/3

+
1

Dy
2/3
 , �4�

�R�� = 	1 − ��

Dx
2/3 + Dy

2/3

P2/3 
L , �5�

��R�
2� = ��

Dx
2 + Dy

2

P
L . �6�

Here A�, ��, ��, A�, ��, and �� are dimensionless universal

amplitudes, which do not depend on P, D, Dx, and Dy.

The best estimates of the amplitudes in Eqs. �1�, �2�, �4�,
and �5� to date are
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A� = 1.1036, 1.1038 � 0.0006, A� = 2.3565 � 0.0004.

�7�

�� = 0.09137 � 0.00007, �� = 0.1701 � 0.0001. �8�

The first entry for A� in Eq. �7� was obtained by Burkhardt

�16�, by solving an integral equation numerically, which

arises in an exact analytical approach. The other estimates

are from our simulations �17� of very long polymers, with

contour lengths up to L�1000�2P�1/3D2/3, where �

 P1/3D2/3 is the characteristic deflection length introduced

by Odijk �14�. Other estimates from simulations, compatible

with these values but with larger error bars, are given in

Refs. �18–21�, and related results for a helical polymer in a

cylindrical channel in Ref. �22�.
The paper is organized as follows. In Sec. II, the under-

lying theoretical framework is reviewed, and new estimates

from simulations,

�� = 0.00478 � 0.00010, �� = 0.00754 � 0.00010,

�9�

for the amplitudes in Eqs. �3� and �6�, obtained with same

method as in Ref. �17�, are presented.

In Sec. III and the Appendix, we consider the mathemati-

cally more tractable problem of a polymer tightly confined in

the transverse direction by a parabolic potential instead of a

channel with hard walls. Exact analytic expressions for each

of the quantities �f , R�, and ��R�
2� are derived. We find that

��R�
2� is overestimated by about 30% if the potential param-

eters are chosen to reproduce L− �R�� for a channel with hard

walls. For the parabolic confining potential we also obtain a

simple analytic result for the distribution of R� or radial dis-

tribution function, which is asymptotically exact for large L

and for moderately large L has the skewed shape seen

experimentally.

In Sec. IV our predictions are compared with experimen-

tal results of Köster and Pfohl �4� for the radial distribution

function of actin filaments in microchannels. Sec. V contains

closing remarks.

II. THEORETICAL FRAMEWORK

In the regime D� P�L, the line or filament by which we

model the polymer is almost straight, without backfolding.

Each such polymer configuration corresponds to a single val-

ued function r��t�, where �x ,y , t� are Cartesian coordinates,

and r�= �x ,y� specifies the transverse displacement of the

polymer from the symmetry axis or t axis of the channel.

Since the slope v� =dr� /dt with respect to the t axis satisfies

�v� ��1, the relation L=�0
R�dt�1+v��t�2�1/2 between the contour

length L and the longitudinal length R� may be replaced by

R� = L −
1

2
�

0

L

dtv��t�2, �10�

and the Hamiltonian H of the wormlike chain �23� simplifies

to

H

kBT
= �

0

L

dt�P

2
	d2r�

dt2 
2

+ V�r��� . �11�

Here the two terms in square brackets are the bending energy

per unit length and the confining potential per unit length,

both divided by kBT. For a polymer in a channel with hard

walls, V�r�� takes the values 0 and � for r� inside and outside

the channel, respectively.

According to Eq. �10�, the average length of tube occu-

pied by the polymer and its variance or mean-square devia-

tion are given by

�R�� = L −
1

2
�

0

L

dt�v��t�2� , �12�

��R�
2� =

1

4
�

0

L

dt1�
0

L

dt2��v��t1�2
v��t2�2� − �v��t1�2��v��t2�2�� ,

�13�

where �R� =R� − �R��.
For a tightly confined polymer in a channel with a rect-

angular cross section, the displacements of the polymer in

the x and y directions are statistically independent. The par-

tition function Z factors into a product of two partition func-

tions ZxZy, which only involve displacements in the x and y

directions, respectively. This is a consequence of the additive

property �d2r� /dt2�2= �d2x /dt2�2+ �d2y /dt2�2 in the Hamil-

tonian �11� and the rectangular boundary, which does not

break the statistical independence in the two transverse di-

rections. From this and from rescaling lengths according to

x�=Dx
−1x, t�= �2P�−1/3Dx

−2/3t, it follows that the statistical av-

erages on the right-hand sides of Eqs. �12� and �13� can all

be determined from simulations of a long polymer with per-

sistence length P�=
1

2
confined to the two-dimensional strip

0	x�	1 in the �x� , t�� plane, as carried out in Ref. �17�.
The statistical averages in Eqs. �12� and �13� can be

expressed in terms of the variable


 =
1

t�
�

0

t�

dt�vx��t��
2, �14�

where vx�
2= �dx� /dt��2. According to the scaling transforma-

tions in the preceding paragraph,

�
� = 	2P

Dx


2/3 1

L
�

0

L

dt�vx�t�
2� = 	2P

Dy


2/3 1

L
�

0

L

dt�vy�t�
2� .

�15�

As discussed in the final paragraph of the Appendix, the

quantity 
 defined in Eq. �14� is expected to follow a Gauss-

ian distribution for sufficiently large L, with the mean value

in Eq. �15� and with variance w2 given by
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w2 = ��
 − �
��2�

=
1

t�2�
0

t�

dt1��
0

t�

dt2���vx��t1��
2
vx��t2��

2� − �vx��t1��
2��vx��t2��

2�� .

�16�

The distribution determined from our simulations of poly-

mers with values of t� up to 300, shown in Fig. 1, is indeed

very nearly Gaussian, and the variance w2, as shown in Fig.

2, is in excellent agreement with the scaling behavior w2t�
→k for large t�, where k is a constant, expected �24� from

Eq. �6�. Substituting this relation in Eq. �16� and expressing

the scaled lengths in terms of the original variables gives

k =
2P

Dx
2

1

L
�

0

L

dt1�
0

L

dt2��vx�t1�2
vx�t2�2� − �vx�t1�2��vx�t2�2��

=
2P

Dy
2

1

L
�

0

L

dt1�
0

L

dt2��vy�t1�2
vy�t2�2� − �vy�t1�2��vy�t2�2�� .

�17�

According to our earlier paper �17�, �
�
=0.2901�0.0003, and from the data shown in Fig. 2 of this

paper, we estimate k=0.0382�0.0010. Inserting these val-

ues in the relations ��=2−5/3�
� and ��=
1

8
k, which follow

from Eqs. �5�, �6�, and �12�–�17�, we obtain the predictions

for �� and �� in Eqs. �8� and �9�.
For a polymer with longitudinal length t� and persistence

length P�=
1

2
in a channel with a circular cross section of

diameter D�=1, we define the quantity


� =
1

t�
�

0

t�

dt�v�� �t��2, �18�

in analogy with Eq. �14�, and the corresponding variance

w
�

2= ��
�− �
���
2�. As seen in Fig. 3, our simulations of poly-

mers are consistent with w
�

2t�→k� for large t�, where k� is a

constant. The entries for �� and �� in Eqs. �8� and �9� follow

from the result �
��=0.5400�0.0004 obtained from our ear-

lier simulations �17� and from the estimate k�

=0.06035�0.00100 from the data in Fig. 3.

III. POLYMER CONFINED BY PARABOLIC POTENTIAL

Next we consider a polymer tightly confined in the trans-

verse direction by a parabolic potential of the form

V�r�� =
1

2
�bxx

2 + byy
2� �19�

instead of a channel with hard walls. The partition function

Z�r� ,v� ;r�0 ,v�0 ; t� corresponding to the Hamiltonian �11� with

the parabolic potential energy �Eq. �19�� was evaluated for

arbitrary values of the position and slope, �r� ,v�� and �r�0 ,v�0�,

FIG. 1. Distribution of the quantity 
= t�
−1�0

t�dt�vx�
2 for a res-

caled polymer with persistence length P�=
1

2
and longitudinal length

t� on a two-dimensional strip of width 1. The curves correspond,

from bottom to top, to t�=100, 225, 400, 625, and 900.

FIG. 2. �Color online� Dependence of w2t� on t�
−1 for a polymer

on a two-dimensional strip, where w2 is the variance or mean-

square deviation of the distribution in Fig. 1. The straight line

shows the best fit of the data from t�=11 to 300 to the functional

form w2t�=k+�t�
−1, for which k=0.038 20 and �=0.0129. The

round points are simulation results for a polymer with one end fixed

in the middle of the strip with slope v�0=0 and with the other end

free to fluctuate. The square points are results for a polymer with

both ends free to fluctuate, as in the experiments. As seen in the

inset, the finite size corrections to the limiting value for large t� are

greater in the case of two free ends.

FIG. 3. �Color online� Dependence of w2t� on t�
−1 for a polymer

in a channel with circular cross section. The straight line shows the

best fit of the data from t�=10 to 100 to the functional form w2t�

=k+�t�
−1, for which k=0.060 35 and �=0.024 13.

FLUCTUATIONS OF A LONG, SEMIFLEXIBLE POLYMER… PHYSICAL REVIEW E 82, 041801 �2010�

041801-3



at the polymer end points and arbitrary longitudinal length t

in Ref. �25�.
The case bx=by of equal potential parameters has been

studied by Levi and Mecke �11� and Thüroff et al. �12�, who

calculated the distribution of R� or radial distribution func-

tion and compared their predictions with the experiments of

Refs. �2,4�. In this paper, we consider distinct values of bx

and by, as is appropriate for rectangular channels with Dx

�Dy, and concentrate mainly on the large-L limit and on the

prediction of the six dimensionless amplitudes A� , . . . ,�� in

Eqs. �1�–�6�.
Since the thermal averages in Eqs. �12� and �13� are inte-

grated over the entire length of the polymer, the particular

boundary conditions at the end points of the polymer are

unimportant in the large-L limit. Straightforward calcula-

tions, given in the Appendix, lead to the results

�kBT�−1�f = 2−1/2P−1/4�bx
1/4 + by

1/4� , �20�

�R�� = �1 − 2−5/2P−3/4�bx
−1/4 + by

−1/4��L , �21�

��R�
2� = 2−9/2P−5/4�bx

−3/4 + by
−3/4�L . �22�

To obtain an approximate formula for the amplitude ��

for a channels with hard walls and a rectangular cross sec-

tion, defined in Eq. �6�, we choose the parabolic potential

parameters bx and by in Eq. �21� so that the average longitu-

dinal length �R�� in the channel, given by Eq. �5�, is repro-

duced, term by term. Substituting these potential parameters

in Eq. �22� and comparing with Eq. �6� leads to a formula for

�� in terms of ��. This calculation and a similar one for the

channel with a circular cross section lead to the relations

�� = 8�
�

3 , �� = 2�
�

3. �23�

We note that Eq. �23� also follows from choosing the para-

bolic potential parameters in Eq. �22� to reproduce ��R�
2� in

Eqs. �3� or �6�, substituting these potential parameters in Eq.

�21�, and comparing the result with Eqs. �2� or �5�.
Substituting the values of �� and �� in Eq. �8� into Eq.

�23�, we obtain the predictions ��=0.006 10�0.000 02 and

��=0.009 84�0.000 02, which are 28% and 31% larger, re-

spectively, than our estimates �Eq. �9�� from simulations.

Thus, we see that calculations in which the hard wall poten-

tial of is replaced by a softer, parabolic confining potential

tend to overestimate the end point fluctuations ��R�
2� if the

potential parameters are chosen to reproduce L− �R�� for a

channel with hard walls. Similarly, if the potential param-

eters are chosen to reproduce ��R�
2� for a channel with hard

walls, the quantity L− �R�� is underestimated.

The asymptotic forms of both L− �R�� and ��R�
2� for a

polymer in a channel with hard walls are correctly repro-

duced if not only the potential parameters, but also the per-

sistence length P̃ of the equivalent parabolically confined

polymer is properly chosen. Setting Eqs. �21� and �22�, with

P̃ in place of P, equal to the corresponding expressions �2�,

�3�, �5�, and �6�, and solving for P̃, we obtain

P̃ =
��

8�
�

3
P, P̃ =

��

2�
�

3
P �24�

for the rectangular and circular channel cross sections, re-

spectively, where the same combinations of exponents occur

as in Eq. �23�. Substituting the values of ��, ��, ��, and ��

from Eqs. �8� and �9� in Eq. �24�, we find that the persistence

length P̃ of the equivalent parabolically confined polymer is

22% and 23% smaller than the persistence length P of the

polymer in the rectangular and circular channel, respectively.

Finally, in the Appendix we derive simple analytic results,

in terms of “inverse Gaussian” functions, for the radial dis-

tribution function of a polymer confined by a parabolic po-

tential in the moderate to large L regime. The predictions,

given in Eqs. �A14�–�A16�, �A20�, and �A21�, with �=L

−R�, are compared with experimental results for polymers in

channels in the next section.

IV. COMPARISON WITH EXPERIMENT

Experiments on unconfined filaments of the biopolymer

actin �see Ref. �2� and references therein� have yielded esti-

mates of 8 to 25 �m for the persistence length. With fluo-

rescence microscopy Köster, Pfohl, and co-workers �2,4�
have measured the radial distribution of actin filaments with

contour length L=21 �m in channels with rectangular cross

sections with depth Dx=1.4 �m and widths Dy =1.5, 4.0,

5.8, and 9.8 �m. Comparing their experimental results for

the radial distribution function, shown below in Figs. 4 and

5, with the theoretical prediction of Levi and Mecke �11� for

a parabolic confining potential, Köster, and Pfohl �4� find

good agreement, for all four channels, with the value P

=13 �m.

Since L is only moderately larger than P, the above ex-

perimental parameters do not clearly satisfy Dx ,Dy � P�L,

the condition under which our predictions for �R�� and ��R�
2�

apply. Nevertheless it is interesting to compare the experi-

ments with our predictions for the scaling regime.

As discussed above and in the last paragraph of the Ap-

pendix, the distribution of R� is expected to be Gaussian in

the scaling regime, with mean value and variance given by

Eqs. �5�, �6�, �8�, and �9�. Using these relations and the above

experimental values of L, Dx, and Dy to determine the mean

and variance as a function of P, we have carried out least

square fits of the experimental results to Gaussian distribu-

tions for all four channels, varying P to optimize the fits.

This leads to the results shown in Fig. 4, and the estimates

P=7.61, 11.1, 14.1, and 10.1 �m for the channels with

widths Dy =1.5, 4.0, 5.8, and 9.8 �m. The first two of these

estimates are expected to be the most reliable, since the con-

dition Dx ,Dy � P�L is more nearly satisfied.

We have also carried out fits of the experimental results in

which both �R�� and ��R�
2� are treated as fit parameters. In

the large-L limit these quantities yield two independent pre-

dictions,

P = 	��

Dx
2/3 + Dy

2/3

1 − �R��/L

3/2

, �25�
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P = ��

Dx
2 + Dy

2

��R�
2�/L

, �26�

for the persistence length, which follow from solving Eqs.

�5� and �6� for P.

Least square fits of the same experimental data to the

inverse Gaussian distribution, given by Eqs. �A14� and

�A18�, with both the mean �R�� and variance ��R�
2� adjusted

to optimize the fit, are shown in Fig. 5. Of course, the two-

parameter fit reproduces the experimental distribution more

closely than the one-parameter fit in Fig. 4. Both the inverse

Gaussian distribution and a convolution of inverse Gaussian

functions, as described in the Appendix, have the skewed

form seen in the experimental data and lead to nearly the

same results.

The fits shown in Fig. 5 lead to the estimates P

= �7.0,2.8�, �9.5, 3.6�, �10.8,4.1�, and �7.2,3.2� in micrometer

for the channel widths Dy =1.5, 4.0, 5.8, and 9.8 �m, where

the first and second numbers in parenthesis follow from sub-

stituting the mean and variance from the best fit in Eqs. �25�
and �26�, respectively, with �� and �� given by Eqs. �8� and

�9�. All of these estimates are smaller than the values P
=13 �m and P=15�3 �m proposed in Refs. �4,11�, re-
spectively, and for each channel the estimate based on Eq.
�26� is only 3 or 4 �m, less than half of the corresponding
estimates based on Eq. �25�. Determining the mean and vari-
ance by fitting the experimental data to an ordinary Gaussian
distribution instead of an inverse Gaussian distribution or by
evaluating the mean and variance directly from the experi-
mental histograms without assuming a particular distribution
leads to quite similar estimates.

Finite-size corrections probably account, at least in part,
for the discrepancy in the estimates of P based on Eqs. �25�
and �26�, with the smaller estimate coming from Eq. �26�. As
the contour length L increases and the polymer is tightly
confined over a greater fraction of its length, ��R�

2� /L ap-
proaches its limiting value from above, so that P, as given by

Eq. �26�, approaches its limiting value from below. In Fig. 2

the lower and upper curves in the inset show the finite size

corrections for polymers with one free end and two free

ends, respectively, with the latter case corresponding to the

experiment. For P=10 �m, Dx=4 �m, L=21 �m, the res-

caled length t�= �2P�−1/3Dx
2/3L is about 3.1, and for this value
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FIG. 4. One-parameter least-squares fit of the

experimental results �histogram� of Köster and

Pfohl �4� for the radial distribution function of

actin filaments in channels with cross section

Dx
Dy with the expected Gaussian distribution

�dashed curves� for Dx ,Dy � P�L. The values of

Dx and Dy are indicated in the upper left corner of

each panel. The histograms and dotted curves are

normalized to unit area. The mean and variance

of the Gaussian curves were determined from

Eqs. �5� and �6�, using the estimates of �� and

�� in Eqs. �8� and �9�, for the experimental pa-

rameters L=21 �m, Dx=1.4 �m, and Dy =1.5,

4.0, 5.8, and 9.8 �m. Choosing the persistence

length P to optimize the fit, yields the estimates

P=7.61, 11.1, 14.1, and 10.1 �m for the chan-

nels of width 1.5, 4.0, 5.8, and 9.8 �m.
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FIG. 5. Two parameter fit of the same experi-

mental data for the radial distribution function as

in Fig. 4 to the inverse Gaussian distribution,

given by Eqs. �A14� and �A18�, with both the

mean �R�� and variance ��R�
2� chosen to optimize

the fit. This leads to the estimates P= �7.0,2.8�,
�9.5,3.6�, �10.8,4.1�, and �7.2,3.2� in �m for the

channel widths Dy =1.5, 4.0, 5.8, and 9.8 �m,

where the first and second numbers in parenthesis

follow from Eqs. �25� and �26�, respectively, with

�� and �� given by Eqs. �8� and �9�.
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of t�, ��R�
2� /L�w2t� is seen to be about 50% larger than its

large t� limit. The actual finite-size corrections are expected

to be even larger than this, since Fig. 2 is based on the

Hamiltonian �11�, which is equivalent to the wormlike chain

for small slopes �dr� /dt��1, but for larger slopes overesti-

mates the bending energy �23�.
In comparing the estimates of P from Eqs. �25� and �26�,

one should keep in mind that the prediction of Eq. �25� is

extremely sensitive to the experimental uncertainty in the

normalized mean ��R�� /L, since this quantity is close to

unity for a long tightly confined polymer, so that the denomi-

nator in Eq. �25� nearly vanishes. For example, increasing

��R�� /L from the value 0.93 by 3% more than doubles the

estimate of P. In view of this, the disagreement of the nu-

merical estimates based on Eqs. �25� and �26� mentioned a

few paragraphs above is not so surprising. One advantage of

Eq. �26� over Eq. �25� is that the relative uncertainties in P

and ��R�
2� /L are the same.

V. CONCLUDING REMARKS

In Ref. �17� and this paper we have determined the uni-

versal amplitudes ��, ��, ��, and �� in the scaling forms

�Eqs. �2�, �3�, �5�, and �6�� for the wormlike chain in cylin-

drical channels with good precision from simulations. We

hope the results will be useful in analyzing experiments.

Combining measurements of �R�� and ��R�
2� and our predic-

tions, one obtains two independent predictions for the persis-

tence length P, which can be checked for consistency. We

recall that ��R�
2� may be determined by measuring the iso-

thermal extension of a polymer in a channel placed under a

weak tension �26� as well as by direct observation of the end

point fluctuations.

We have also derived exact analytic results for a polymer

confined by a parabolic potential rather than a hard wall and

shown that ��R�
2� is overestimated by about 30% if the po-

tential parameters are chosen to reproduce L− �R�� for a

channel with hard walls.

Finally, we have compared our predictions for the scaling

regime with the experimental data of Ref. �4� for the radial

distribution function. The comparison points to a persistence

length smaller than the values 13 and 15�3 �m reported in

Refs. �4,11�, respectively, but the experimental parameters

are at the edge or outside the scaling regime, and significant

corrections to scaling are expected. For a more conclusive

comparison with our results, we would welcome experiments

that probe deeper into the scaling regime Dx ,Dy � P�L.
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APPENDIX: CALCULATIONAL DETAILS FOR

PARABOLIC CONFINING POTENTIAL

For the Hamiltonian �11� with the potential energy �Eq.

�19��, the polymer partition function ZL
�3� for a polymer in the

three dimensional space �x ,y , t� factors in the form

ZL
�3��ax,bx;ay,by� = ZL

�2��ax,bx�ZL
�2��ay,by� . �A1�

Here

ZL
�2��a,b�

=� Dx exp�−
1

2
�

0

L

dt�P	d2x

dt2 
2

+ a	dx

dt

2

+ bx2��
�A2�

is the partition function of a wormlike chain in two spatial

dimensions �x , t�, with a parabolic confining potential.

In Eqs. �A1� and �A2�, auxiliary fields ax and ay have

been introduced for conveniently generating correlations of

�0
Ldtvx

2 and �0
Ldtvy

2 by differentiation. The auxiliary fields

have a physical interpretation related to tension. If one end of

the polymer is fixed and the other end is free to move but

subject to a force or tension � applied in the longitudinal

direction, the corresponding potential energy −��R� −L�
� �

2
�0

Ldtv��t�2, where we have used Eq. �10�, is included in the

Hamiltonian and contributes to the Boltzmann factor. Com-

paring with the partition functions in Eqs. �A1� and �A2�, we

see that ax=ay =� /kBT.

For calculating “bulk” properties of long polymers that

are independent of the detailed boundary conditions at the

ends, the periodic boundary condition r��t�=r��t+L� is espe-

cially convenient. With the substitution x�t�=L−1/2�qxqeiqt,

Eq. �A2� takes the form

ZL
�2��a,b� =� Dx�

q

exp�−
1

2
�Pq4 + aq2 + b�xqx−q� .

�A3�

The subtracted free energy �f �2��a ,b�, defined by

�f �2��a,b�

kBT
= − L−1 ln�ZL

�2��a,b�/ZL
�2��0,0�� , �A4�

may be evaluated by standard Gaussian integration tech-

niques �27� and is given by

�f �2��a,b�

kBT
= �

0

�
dq

2�
ln

Pq4 + aq2 + b

Pq4

= 2−1/2b1/4P−1/4	1 +
a

2�bP

1/2

. �A5�

The right-most expression in Eq. �A5� also follows

readily from the path-integral approach of Ref. �25�, accord-

ing to which the partition function of the polymer with fixed

end points and end slopes has the expansion

Z�2��x,v;x0,v0;L� = �
�

���x,v����x0,− v0�e−E�L, �A6�

analogous to a quantum mechanical propagator. The eigen-

values and eigenfunctions are solutions of the L-independent

Fokker-Planck equation

BURKHARDT, YANG, AND GOMPPER PHYSICAL REVIEW E 82, 041801 �2010�

041801-6



	v

�

�x
−

1

2P

�
2

�v
2

+
1

2
bx2 +

1

2
av

2
��x,v� = E��x,v� .

�A7�

The dominant contribution for large L in Eq. �A6� comes

from the ground state, which has eigenfunction �0�x ,v� and

eigenvalue E0, where E0= �kBT�−1�f �2��a ,b�, as follows from

Eqs. �A4� and �A6�. According to Ref. �25�, �0�x ,v� has the

Gaussian form �0�x ,v�=A exp�−Bx2−Cxv−Dv
2�. Requiring

that this expression satisfy Eq. �A7� determines E0 and the

constants B, C, D, and Eq. �A7�, yielding

�0�x,v� = A exp�− �bP�1/2E0x2 + �bP�1/2xv − PE0v
2� ,

�A8�

with E0 given by the right-most expression in Eq. �A5�.
Setting a=0 in Eq. �A5� and including the contributions

from displacements in both the x and y directions into ac-

count, we obtain the free energy per unit length of confine-

ment in Eq. �20�, which is consistent with Eq. �16� of Ref.

�25�.
From Eqs. �A2�, �A4�, and �A5�,

�

�a

�f �2��a,b�

kBT

=
1

2L
�

0

L

dt�v�t�2�

= 2−5/2b−1/4P−3/4	1 +
a

2�bP

−1/2

. �A9�

To calculate the average longitudinal extension �R��, we set

a=0 in Eq. �A9�, substitute the result in Eq. �12�, and include

the contributions from transverse displacements in both the x

and y directions. This yields the expression for the average

longitudinal extension given in Eq. �21�.
Similarly, from Eqs. �A2�, �A4�, and �A5�,

− 	 �

�a

2�f �2��a,b�

kBT

=
1

4L
�

0

L

dt1�
0

L

dt2��v�t1�2
v�t2�2� − �v�t1�2��v�t2�2��

= 2−9/2b−3/4P−5/4	1 +
a

2�bP

−3/2

. �A10�

To obtain ��R�
2�, we set a=0 in Eq. �A10�, substitute the

result in Eq. �13�, and include the contributions from trans-

verse displacements in both the x and y directions. This

yields the expression for the average longitudinal extension

given in Eq. �22�.
It is straightforward to derive the complete distribution

function

P�2���;a,b� =��	� −
1

2
�

0

L

dtv�t�2
� , �A11�

from which the above moments follow. Its Laplace transform

is given by

P̃�2��s;a,b� = �
0

�

d�e−s�P��;a,b� =�exp	−
s

2
�

0

L

dtv�t�2
� ,

�A12�

where the average is to be carried out with the same Boltz-

mann weight as in Eq. �A2�. Thus,

P̃�2��s;a,b� =
ZL

�2��a + s,b�

ZL
�2��a,b�

= exp�− L
f �2��a + s,b� − f �2��a,b�

kBT
� ,

�A13�

where we have made use of the definition �A4�. Substituting

Eq. �A5� in Eq. �A13� and evaluating the inverse Laplace

transform, we find that P�2��� ;a ,b� is given by the “inverse

Gaussian” or Wald distribution �28�

Pinvgauss��� =
1

�2����2�
	 ���

�

3/2

exp�−
���

�

�� − ����2

2���2�
� ,

0 	 � 	 � , �A14�

where

���a,b = 2−5/2b−1/4P−3/4	1 +
a

2�bP

−1/2

L , �A15�

���2�a,b = 2−9/2b−3/4P−5/4	1 +
a

2�bP

−3/2

L , �A16�

are the mean and variance of the distribution, respectively,

consistent with Eqs. �A9� and �A10�. Note that inverse

Gaussian distribution vanishes as � approaches zero, as ex-

pected from Eq. �A11�, reflecting the fact that the end-to-end

distance R� of the polymer cannot exceed the contour length.

Since the mean and variance in Eqs. �A15� and �A16� are

both proportional to L, the inverse Gaussian distribution �Eq.

�A14�� reduces to the ordinary Gaussian form

Pgauss��� =
1

�2����2�
exp�−

�� − ����2

2���2�
�, − � 	 � 	 � ,

�A17�

in the large-L limit.

The above results for a polymer in a two dimensional

space �x , t� are easily generalized to three spatial dimensions.

In Eq. �A11�, the quantity v
2 is replaced by vx

2+vy
2, so that

� = L − R� , �A18�

in agreement with Eq. �10�, and Eq. �A13� is replaced by

P̃�3��s;ax,bx;ay,by� =
ZL

�2��ax + s,bx�

ZL
�2��ax,bx�

ZL
�2��ay + s,by�

ZL
�2��ay,by�

.

�A19�

Accordingly, the inverse Laplace transform is given by the

convolution
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P
�

�3���� = �
0

�

d��P�2��� − ��;ax,bx�P�2����;ay,by� ,

�A20�

where each of the factors P�2� in the integrand has the inverse

Gaussian form �Eq. �A14��, with mean and variance defined

by Eqs. �A15� and �A16�.
In the case of cylindrically symmetric potential param-

eters ax=ay =a, bx=by =b, appropriate for a channel with a

circular or square cross section, the convolution in Eq. �A20�
can be evaluated �or circumvented�. The corresponding dis-

tribution also has the inverse Gaussian form

P
�

�3���� = Pinvgauss���, ���� = 2���2�a,b,

���2� = 2���2�a,b, 0 	 � 	 � , �A21�

in terms of the distribution �Eq. �A14�� and the mean and

variance defined in Eqs. �A15� and �A16�.
In the large-L limit, in which P�2��� ;a ,b� becomes Gauss-

ian, the distribution functions P
�

�3���� and P
�

�3���� both take

the Gaussian form �Eq. �A17��, with mean ���= ���ax,bx

+ ���ay,by
and variance ���2�= ���2�ax,bx

+ ���2�ay,by
defined in

Eqs. �A15� and �A16�, as is consistent with Eqs. �21� and

�22�.
Like Eqs. �A4� and �A13�, our predictions �Eqs. �A20�

and �A21�� for the distributions P���� and P���� in terms of

inverse Gaussian functions are really only exact in the

large-L limit, in which the ground-state contribution to the

sum in Eq. �A6� dominates. However, for moderately large L

the distributions also work quite well, reproducing the

skewed form of the radial distribution observed experimen-
tally and calculated theoretically in Refs. �11,12�. This is
shown in Sec. IV, where our results are compared with recent
experimental data of Köster and Pfohl �4� for the radial dis-
tribution function.

Finally we argue that the distribution of R� becomes

Gaussian in the large-L limit not just for the parabolic poten-

tial, but for general confining potentials, including the hard-

wall potential. To see this, note that for a general confining

potential, the Laplace transform of the distribution function,

defined as in Eqs. �A11� and �A12� is related to the free

energy per unit length f�a� by

P̃�2��s;a� = exp�− L
f �2��a + s� − f �2��a�

kBT
�

= exp�− ���s +
1

2
���2�s2 + LO�s3�� , �A22�

analogous to Eq. �A13�. Here we have expanded f�s+a� to

second order in a, relating the expansion coefficients to mo-

ments of �, as above. With the substitution s= iy the inverse

Laplace transform of Eq. �A13� takes the form

P̃�2���;a� =
1

2�
�

−�

�

dy exp�i�� − ����y −
1

2
���2�y2

+ LO��iy�3�� . �A23�

Treating the O��iy�3� term in square brackets perturbatively,

one finds a negligible contribution, for large L, to the Gauss-

ian distribution �Eq. �A17�� implied by the first two terms.
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