000001153 001__ 1153 000001153 005__ 20210129210411.0 000001153 0247_ $$2pmid$$apmid:20331321 000001153 0247_ $$2DOI$$a10.1063/1.3358272 000001153 0247_ $$2WOS$$aWOS:000275825500052 000001153 0247_ $$2Handle$$a2128/18952 000001153 037__ $$aPreJuSER-1153 000001153 041__ $$aeng 000001153 082__ $$a540 000001153 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical 000001153 1001_ $$0P:(DE-Juel1)132079$$aDachsel, H.$$b0$$uFZJ 000001153 245__ $$aCorrected article: An error-controlled fast multipole method 000001153 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010 000001153 300__ $$a119901 000001153 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000001153 3367_ $$2DataCite$$aOutput Types/Journal article 000001153 3367_ $$00$$2EndNote$$aJournal Article 000001153 3367_ $$2BibTeX$$aARTICLE 000001153 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000001153 3367_ $$2DRIVER$$aarticle 000001153 440_0 $$03145$$aJournal of Chemical Physics$$v132$$x0021-9606$$y11 000001153 500__ $$aRecord converted from VDB: 12.11.2012 000001153 520__ $$aWe present a two-stage error estimation scheme for the fast multipole method (FMM). This scheme can be applied to any particle system. It incorporates homogeneous as well as inhomogeneous distributions. The FMM error as a consequence of the finite representation of the multipole expansions and the operator error is correlated with an absolute or relative user-requested energy threshold. Such a reliable error control is the basis for making reliable simulations in computational physics. Our FMM program on the basis of the two-stage error estimation scheme is available on request. 000001153 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0 000001153 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1 000001153 536__ $$0G:(DE-Juel1)FMM-20140729$$aFMM - Fast Multipole Method (FMM-20140729)$$cFMM-20140729$$x2 000001153 588__ $$aDataset connected to Web of Science, Pubmed 000001153 650_7 $$2WoSType$$aJ 000001153 65320 $$2Author$$aplasma simulation 000001153 65320 $$2Author$$aplasma-beam interactions 000001153 773__ $$0PERI:(DE-600)1473050-9$$a10.1063/1.3358272$$gVol. 132, p. 119901$$p119901$$q132<119901$$tThe @journal of chemical physics$$v132$$x0021-9606$$y2010 000001153 8567_ $$uhttp://dx.doi.org/10.1063/1.3358272 000001153 8564_ $$uhttps://juser.fz-juelich.de/record/1153/files/1.3358272.pdf$$yOpenAccess 000001153 8564_ $$uhttps://juser.fz-juelich.de/record/1153/files/1.3358272.gif?subformat=icon$$xicon$$yOpenAccess 000001153 8564_ $$uhttps://juser.fz-juelich.de/record/1153/files/1.3358272.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000001153 8564_ $$uhttps://juser.fz-juelich.de/record/1153/files/1.3358272.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000001153 8564_ $$uhttps://juser.fz-juelich.de/record/1153/files/1.3358272.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000001153 909CO $$ooai:juser.fz-juelich.de:1153$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000001153 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000001153 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1 000001153 9141_ $$y2010 000001153 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000001153 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000001153 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000001153 970__ $$aVDB:(DE-Juel1)102076 000001153 980__ $$aVDB 000001153 980__ $$aConvertedRecord 000001153 980__ $$ajournal 000001153 980__ $$aI:(DE-Juel1)JSC-20090406 000001153 980__ $$aUNRESTRICTED 000001153 9801_ $$aFullTexts