001     1153
005     20210129210411.0
024 7 _ |a pmid:20331321
|2 pmid
024 7 _ |a 10.1063/1.3358272
|2 DOI
024 7 _ |a WOS:000275825500052
|2 WOS
024 7 _ |a 2128/18952
|2 Handle
037 _ _ |a PreJuSER-1153
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Dachsel, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)132079
245 _ _ |a Corrected article: An error-controlled fast multipole method
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2010
300 _ _ |a 119901
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|y 11
|v 132
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We present a two-stage error estimation scheme for the fast multipole method (FMM). This scheme can be applied to any particle system. It incorporates homogeneous as well as inhomogeneous distributions. The FMM error as a consequence of the finite representation of the multipole expansions and the operator error is correlated with an absolute or relative user-requested energy threshold. Such a reliable error control is the basis for making reliable simulations in computational physics. Our FMM program on the basis of the two-stage error estimation scheme is available on request.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
536 _ _ |0 G:(DE-Juel1)FMM-20140729
|c FMM-20140729
|x 2
|a FMM - Fast Multipole Method (FMM-20140729)
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a plasma simulation
653 2 0 |2 Author
|a plasma-beam interactions
773 _ _ |a 10.1063/1.3358272
|g Vol. 132, p. 119901
|p 119901
|q 132<119901
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 132
|y 2010
|x 0021-9606
856 7 _ |u http://dx.doi.org/10.1063/1.3358272
856 4 _ |u https://juser.fz-juelich.de/record/1153/files/1.3358272.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1153/files/1.3358272.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1153/files/1.3358272.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1153/files/1.3358272.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1153/files/1.3358272.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1153
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)102076
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21