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We present a two-stage error estimation scheme for the fast multipole method �FMM�. This scheme
can be applied to any particle system. It incorporates homogeneous as well as inhomogeneous
distributions. The FMM error as a consequence of the finite representation of the multipole
expansions and the operator error is correlated with an absolute or relative user-requested energy
threshold. Such a reliable error control is the basis for making reliable simulations in computational
physics. Our FMM program on the basis of the two-stage error estimation scheme is available on
request. © 2010 American Institute of Physics. �doi:10.1063/1.3358272�

I. INTRODUCTION

The fast multipole method �FMM�1–5 is one of the most
effective methods to evaluate pairwise potentials required in
several scientific applications such as molecular dynamics6

and plasma physics.7 The FMM achieves linear scaling with
respect to the number of particles by expanding local charges
in multipole expansions and can be applied to a variety of
potentials. The control of the errors due to the finite expan-
sions is a crucial aspect in the application of the FMM.4,8–11

Any error estimation dealing with the worst case scenario
with respect to the positions of the particles in the boxes and
the distance between the boxes always overestimates the
length of these expansions. The basis of a reliable error es-
timation scheme is the computation of a small upper error
limit. The smaller this limit can be computed the better is the
error estimation scheme. The scheme should include the con-
tributions of all particles to the FMM error. Using the ap-
proach described in this paper the level of poles depending
on a user-requested energy threshold can be determined. Be-
cause our error estimation scheme follows the FMM algo-
rithm in detail we do not need to apply Chebyshev polyno-
mials. Chebyshev economization always assumes the worst
case scenario. Such a situation is certainly not the case for a
realistic particle distribution. The Chebyshev economization
only includes the errors resulting from the truncation of the
infinite expansion of the reciprocal distance. In the FMM
approach further errors are incurred by use of the operator
B.4,5 These errors are ignored by the Chebyshev economiza-
tion.

Besides the operator B �multipole-to-local translation�
the FMM uses the operators A �multipole-to-multipole trans-
lation� and C �local-to-local translation�. The FMM could

also be implemented without the use of the operators A and
C increasing the complexity from O�N� to O�N log N�.
However, the two different implementations give the exact
same results. Because we must use a finite binary floating
point representation the results of the schemes only differ
within the magnitude of the machine precision. The use of
the operators A and C has no impact on the accuracy of the
calculation �energy, potential, and gradient�.3 The operators
A and C translate exact up to the level of poles in the un-
shifted expansions. Because A and C have no impact on the
accuracy of the results these operators do not affect the er-
rors. Hence, the operators A and C do not need to be con-
sidered in the FMM error estimation scheme. Therefore only
operator B has to be taken into account as described in this
paper. The error due to the finite representation of the mul-
tipole expansions is implicitly handled in our scheme.

This work has been motivated by the requirements of
numerical simulations in the field of laser plasma
interaction.12–16 Simulations of clusters consisting of 106 or
more charged particles simply require a reliable error control
for various reasons. Due to error accumulation, hundreds of
thousands or millions of time steps within a molecular dy-
namics simulation could lead to unphysical artifacts. Without
error control a small change in the geometry of a single
particle could cause a discontinuous change in the energy in
case the particle moves from its original box to another box
on a certain level of the FMM tree.

The basic idea of our FMM error estimation scheme is to
compute the errors depending on the actual particle posi-
tions. Assuming the worst case scenario always overesti-
mates the level of poles. Our approach determines a smaller
level of poles for a certain user-requested energy threshold. It
can reduce the total runtime of a FMM calculation by an
order of magnitude or even more.a�Electronic mail: h.dachsel@fz-juelich.de.
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The development of a reliable and effective error estima-
tion scheme for the FMM is in principle not an easy subject
and therefore a certain level of mathematics is necessary to
tackle this problem. Nevertheless we have tried to keep the
mathematics as simple as possible following the notation
used by White and Head-Gordon.4,5 We have implemented
the two-stage error estimation scheme described in this paper
in our FMM program which is available on request.17

A. Laser plasma interaction

The interaction of clusters with intensive
��1015 W /cm2� and short ��1 ps� laser pulses is one of the
frontiers in physics today. Very interesting phenomena can
be investigated, for example, the formation of highly charged
ions and high energetic electrons. The irradiation of clusters
with intensive short laser pulses shows many fascinating dy-
namical phenomena, starting with the mechanisms of energy
absorption from the laser pulse and ending with the process
of recombination when the cluster expands. High-energy
Coulomb explosion of clusters caused by femtosecond pulses
has been observed. For large clusters, strong laser pulses
could even create a nanocluster inside the cluster. Reliable
computer simulations of intensive laser pulse interactions
with plasma targets are the key to understand these pro-
cesses. All these phenomena are the result of effective energy
absorption from the laser field into the cluster. The energy
absorption leads to a rapid expansion of the cluster on a
femtosecond time scale. In the course of expansion the elec-
tron density decreases resulting in strong energy absorption.
The explosion of clusters ejects for example xenon ions with
kinetic energies up to 1 MeV. Compared to the Coulomb
explosion of molecules this energy is about four orders of
magnitude higher. The laser-induced Coulomb explosion of
clusters shows that access to an extremely high temperature
state of matter is possible, which is the basis for fusion ex-
periments.

II. THEORY

In order to derive the algorithm we assume the particle
coordinates are scaled so that all particles are enclosed by a
box with a coordinate range from 0 to 1 in each spatial di-
rection. We propose a two-stage error estimation scheme. In
the first stage homogeneous distributions of particles in all
boxes on all levels of the FMM tree are assumed. In the
second stage the real distributions of the particles in the
boxes are taken into account by using an additional space
domain decomposition for each box. Hence, the contribution
of each particle with respect to the absolute or relative en-
ergy error is taken into account. It shows that the error con-
tribution of a single particle depends strongly on the distance
of the particle to the center of the box.

A. First stage of the error estimation scheme

At first we compute an average absolute error of the
interactions of two separated boxes with respect to the level
of poles p, at which the multipole expansions are truncated.
We average over all possible box positions depending on the
FMM separation criterion ws.4 The energy of two separated

boxes18 �Fig. 1� within the rotation based FMM4,5,19–21 ap-
proach can be written in complete form as follows:

E = �
l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j

�
n=−min�j, l�

min�j, l�

�− 1� j

���l − m�!�l + m�!
�l − n�!�l + n�!

eim�dmn
l ����lm

box 1 �j + l�!
Rj+l+1

���j − k�!�j + k�!
�j − n�!�j + n�!

eik�dk, −n
j ���� jk

box 2. �1�

The variables R, �, and � are the spherical coordinates with
respect to the relative position of the two box centers to each
other. The matrices dl and dj are components of the Wigner
D-matrices.19–21 The summation over n in Eq. �1�

�
n=−min�j, l�

min�j, l� ��l − m�!�l + m�!
�l − n�!�l + n�!

dmn
l ���

���j − k�!�j + k�!
�j − n�!�j + n�!

dk, −n
j ���

=
�j + l − k − m�!

�j + l�!
Pj+l, k+m�cos���� �2�

is leading to the energy expression of the conventional FMM
which is a better approach for an error estimation scheme
compared to Eq. �1�. The energy of the conventional FMM is
given by

E = �
l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j

�− 1� j�lm
box 1

�
�j + l − k − m�!

Rj+l+1 Pj+l, k+m�cos����ei�k+m��� jk
box 2. �3�

The terms Pj+l, k+m are the associated Legendre polynomials.
The multipole moments of the two boxes are defined by
�lm

box 1 and � jk
box 2 with

�lm
box 1 = �

I=1

Nbox 1

qIaI
l 1

�l + m�!
Plm�cos��I��e−im	I �4�

and

FIG. 1. The positions of the two box centers. Subscript 1 refers to box 1 and
subscript 2 to box 2, respectively.
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� jk
box 2 = �

J=1

Nbox 2

qJaJ
j 1

�j + k�!
Pjk�cos��J��e−ik	J. �5�

The upper bounds Nbox 1 and Nbox 2 indicate the number of
particles in the two boxes. qI is the charge of particle I, and
aI, �I, and 	I are the spherical coordinates of particle I with
respect to the center of the first box. qJ is the charge of
particle J, and aJ, �J, and 	J are the spherical coordinates of
particle J with respect to the center of the second box. Now
we can compute the upper limit for the multipole moments

of a homogeneous distribution. The absolute value of the
phase factors is equal to 1

�e−im	I� = 1, �6�

�e−ik	J� = 1. �7�

To avoid any under- and overflows in the binary floating
point representations we substitute the terms 1 / �l+m�! by
l! / �l+m�! in Eq. �4� and 1 / �j+k�! by j! / �j+k�! in Eq. �5�
and introduce the terms 2−l and 2−j. We introduce the aver-
aged multipole moments for level L �L�0� of the FMM tree
as follows

�̃lm
box 1 = � �

I=1

Nbox 1

�qI�	
−1

1 

−1

1 

−1

1 ��x2 + y2 + z2
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−1

1 

−1

1

dxdydz

. �8�

The value L=1 corresponds to the complete simulation box
�0, . . . ,1 , 0 , . . . ,1 , 0 , . . . ,1�. Due to symmetry Eq. �8� can
be simplified

�̃lm
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0
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0
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0
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We obtain the analog expression for the multipole moments
of the second box

�̃ jk
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0
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0
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The introduction of the two chargeless multipole moments
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0
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0
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2
	l

�
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�l + m�!�Plm� z
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and

�̃̃ jk = 

0
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0
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0

1 ��x2 + y2 + z2

2
	 j

�
j!

�j + k�!�Pjk� z
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is leading to

�̃lm
box 1 = �2−L�l� �

I=1

Nbox 1

�qI�	�̃̃lm �13�

and

�̃ jk
box 2 = �2−L� j� �

J=1

Nbox 2

�qJ�	�̃̃ jk. �14�

The integration can be performed numerically with
sufficient accuracy. We have used the Romberg
integration method. The box with coordinate ranges
�0, . . . ,1 , 0 , . . . ,1 , 0 , . . . ,1� is divided in half along each
Cartesian axis ten times to yield 810 boxes, respectively, 810

points have been used in the numerical integration. We have
performed the numerical integration in double precision �64
bits for the representation of a floating point number�. The
distance R in Eq. �3� represents the distance between the
centers of two separated boxes. Each level L of the FMM
tree consists of 2L−1 boxes in one dimension �1D�. To
obtain a level-independent distance R̃ we define

R̃ = 2LR . �15�

On each level we have 8L−1 boxes in three dimensions �3D�.
The distance R̃ is always equal to or greater than 2�ws+1�
and less than or equal to 2�2ws+1��3 in case separated
boxes exist on the level L. To guarantee numerical stability
we rearrange terms and use normalized associated Legendre
polynomials. We introduce the term

�j + l�!
j!l!2 j+l+1 �16�

with j+ l�0 for the purpose of correction. This term corre-
sponds to a probability and compensates the overestimation
of the level of poles p as a consequence of the disregard of
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the real distribution of positive and negative contributions,
since we treat negative contributions as being positive. The
summation over j in Eq. �16� is always unity

�
j=0

�
�j + l�!

j!l!2 j+l+1 = 1. �17�

The absolute value of the phase factor in Eq. �3� is equal
to 1

�ei�k+m��� = 1. �18�

Now we use Eqs. �9�, �10�, �15�, �16�, and �18� to simplify
Eq. �3� yielding

ẼL = 2L−1Ẽ �19�

with

Ẽ = 2
�̃00

box 1�̃00
box 2

R̃

+ �
l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j
�̃lm

box 1

�2−L�l �2�ws + 1�

R̃
	 j+l+1

�
��j + l − k − m�!�j + l + k + m�!

j!l!�ws + 1� j+l+1

�
�j + l�!

j!l!2 j+l+1 �Pj+l, �k+m�
normalized�cos�����

�̃ jk
box 2

�2−L� j , j + l � 0.

�20�

The normalized associated Legendre polynomials are given
by

Pj+l, �k+m�
normalized�cos���� =��j + l − �k + m��!

�j + l + �k + m��!

�Pj+l, �k+m��cos���� �21�

with

�Pj+l, �k+m�
normalized�cos����� � 1. �22�

For now we neglect the charges and use Eqs. �13� and �14� to
simplify Eq. �20�

Ẽ = 2
�̃̃00�̃̃00

R̃
+ �

l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j

�̃̃lm

��2�ws + 1�

R̃
	 j+l+1��j + l − k − m�!�j + l + k + m�!

j!l!�ws + 1� j+l+1

�
�j + l�!

j!l!2 j+l+1 �Pj+l, �k+m�
normalized�cos������̃̃ jk, j + l � 0 �23�

with

�̃̃00 = 

0

1 

0

1 

0

1

dxdydz = 1 �24�

and average over all possible box-box interactions. By taking
into account all the eight child boxes of a certain box and
neglecting edge effects we have to consider 56�2ws+1�3

box-box interactions. Each interaction is defined by a pair of
spherical coordinates �Ri , �i�. Some of these interactions
may be defined by the same pair of spherical coordinates. We
define

Ē̃ = �
l=0

�

�
j=0

�

gjl �25�

with

g00 =
2�̃̃00�̃̃00

56�2ws + 1�3 �
i=1

56�2ws + 1�3

1

R̃i

�26�

and

gjl =
1

56�2ws + 1�3 �
i=1

56�2ws + 1�3

�
m=−l

l

�
k=−j

j

�̃̃lm

��2�ws + 1�

R̃i
	 j+l+1��j + l − k − m�!�j + l + k + m�!

j!l!�ws + 1� j+l+1

�
�j + l�!

j!l!2 j+l+1 �Pj+l, �k+m�
normalized�cos��i����̃̃ jk, j + l � 0. �27�

The elements of gjl satisfy the symmetry condition gjl=glj.
Since FMM implementations demand a finite level of poles p
causing an error in Eq. �1�, p can be obtained by splitting the
two sums in Eq. �25� into two parts, a sum from 0 to p and a
second sum from p+1 to infinity, yielding

Ē̃ = �
l=0

p ��
j=0

p

gjl + �
j=p+1

�

gjl	 + �
l=p+1

� ��
j=0

p

gjl + �
j=p+1

�

gjl	 .

�28�

Now we obtain the error for Ē̃ as a function of the level of
poles p with


Ē̃�p� = �
l=0

p

�
j=p+1

�

gjl + �
l=p+1

�

�
j=0

p

gjl + �
l=p+1

�

�
j=p+1

�

gjl

= �
l=0

p

�
j=p+1

�

gjl + �
l=p+1

�

�
j=0

�

gjl. �29�

The vector 
Ē̃ can be pre-computed and stored �Table I�.

The function 
Ē̃�p� is shown in Fig. 2. The precomputed
values can be used in a simulation as follows. After the par-
ticle coordinates have been scaled, the parent box is divided
into eight child boxes in 3D. Each of these child boxes is
subdivided creating 64 child boxes in 3D on level 3. This
procedure continues until the minimum of computation time
has been found depending on a user-requested absolute en-
ergy threshold 
Ereq. On each level of the FMM tree with
separated boxes all far field box-box interactions
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��K�L��M�K�� have to be taken into account. Finally we have
to sum over all levels L and all box-box interactions on the
levels


Ereq �
1

2

Ē̃�p��

L
�
K�L�

�
M�K�

2L−1� �
I=1

Nbox K

�qI�	
�� �

J=1

Nbox M

�qJ�	 . �30�

Because each box-box interaction is computed twice we
have to divide the result by 2. We can change Eq. �30�
slightly to be computationally more efficient

TABLE I. 
Ē̃ depending on the level of poles for 0� p�101.

Level of poles 
Ē̃

0 0.346 731 006 239 123 069�10−01

1 0.562 465 411 713 349 089�10−02

2 0.116 936 137 039 975 664�10−02

3 0.286 323 285 926 225 595�10−03

4 0.790 774 393 858 241 045�10−04

5 0.240 199 453 480 825 078�10−04

6 0.790 161 568 817 730 142�10−05

7 0.277 794 622 043 420 435�10−05

8 0.103 448 891 695 808 980�10−05

9 0.405 586 188 452 373 622�10−06

10 0.166 697 913 065 686 554�10−06

11 0.714 180 324 616 708 230�10−07

12 0.318 405 206 475 023 056�10−07

13 0.146 925 468 839 778 159�10−07

14 0.700 209 322 516 717 622�10−08

15 0.343 711 670 713 892 661�10−08

16 0.173 192 977 463 490 001�10−08

17 0.894 389 839 347 706 292�10−09

18 0.471 856 157 766 461 623�10−09

19 0.253 885 659 792 516 785�10−09

20 0.139 155 853 271 036 045�10−09

21 0.774 806 428 149 775 649�10−10

22 0.437 973 100 288 791 631�10−10

23 0.250 897 959 392 884 788�10−10

24 0.145 521 280 136 111 869�10−10

25 0.853 959 295 135 225 828�10−11

26 0.506 093 274 942 549 819�10−11

27 0.302 909 206 303 276 927�10−11

28 0.182 932 728 104 287 674�10−11

29 0.111 368 947 775 526 674�10−11

30 0.683 381 017 661 747 299�10−12

31 0.422 176 848 863 055 456�10−12

32 0.262 622 690 729 507 371�10−12

33 0.164 399 252 291 339 076�10−12

34 0.103 482 028 019 455 833�10−12

35 0.655 143 170 259 656 972�10−13

36 0.416 831 809 049 214 025�10−13

37 0.266 521 344 937 552 025�10−13

38 0.171 208 773 767 498 294�10−13

39 0.110 431 360 494 495 074�10−13

40 0.715 461 231 109 113 583�10−14

41 0.465 244 430 656 835 537�10−14

42 0.303 644 668 125 161 447�10−14

43 0.198 914 450 784 026 232�10−14

44 0.130 717 619 978 435 692�10−14

45 0.861 930 118 736 359 871�10−15

46 0.569 974 113 554 490 419�10−15

47 0.378 005 643 922 669 805�10−15

48 0.251 463 748 423 698 124�10−15

49 0.167 681 532 448 788 446�10−15

50 0.112 109 725 775 368 340�10−15

51 0.751 378 604 546 538 147�10−16

52 0.504 772 887 241 145 989�10−16

53 0.339 940 944 384 364 819�10−16

54 0.229 357 612 857 324 952�10−16

55 0.155 090 896 652 443 053�10−16

56 0.105 095 591 428 024 057�10−16

57 0.713 464 542 506 227 146�10−17

58 0.485 325 100 928 894 121�10−17

59 0.330 661 108 107 414 281�10−17

TABLE I. �Continued.�

Level of poles 
Ē̃

60 0.225 712 315 521 735 834�10−17

61 0.154 348 299 847 622 816�10−17

62 0.105 697 803 772 035 782�10−17

63 0.725 091 247 693 815 271�10−18

64 0.498 120 238 571 297 246�10−18

65 0.342 715 886 198 196 062�10−18

66 0.236 154 871 564 270 836�10−18

67 0.162 924 997 003 520 526�10−18

68 0.112 577 672 081 913 740�10−18

69 0.778 812 242 668 708 876�10−19

70 0.539 442 806 730 615 923�10−19

71 0.374 171 963 549 876 115�10−19

72 0.259 810 755 348 535 438�10−19

73 0.180 633 222 470 452 024�10−19

74 0.125 714 489 266 537 428�10−19

75 0.875 877 390 705 820 314�10−20

76 0.611 037 835 707 714 833�10−20

77 0.426 639 056 089 346 960�10−20

78 0.298 202 942 920 053 238�10−20

79 0.208 641 456 061 492 213�10−20

80 0.146 118 188 762 707 277�10−20

81 0.102 444 609 383 165 003�10−20

82 0.718 750 343 683 977 255�10−21

83 0.504 759 144 853 701 595�10−21

84 0.354 829 073 547 639 235�10−21

85 0.249 619 957 112 292 326�10−21

86 0.175 773 128 342 598 693�10−21

87 0.123 857 021 460 654 878�10−21

88 0.873 510 914 198 504 058�10−22

89 0.616 587 698 251 202 001�10−22

90 0.435 489 807 308 156 787�10−22

91 0.307 857 569 061 083 891�10−22

92 0.217 778 185 552 155 634�10−22

93 0.154 164 756 334 168 359�10−22

94 0.109 218 091 210 508 913�10−22

95 0.774 178 267 063 568 442�10−23

96 0.549 225 992 133 482 842�10−23

97 0.389 869 364 369 932 214�10−23

98 0.276 906 016 944 480 070�10−23

99 0.196 825 617 009 790 711�10−23

100 0.139 975 734 381 477 048�10−23

101 0.996 159 298 985 506 144�10−24
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Ereq � 
Ē̃�p��
L

�
K�L�

�
M�K��K

2L−1� �
I=1

Nbox K

�qI�	
�� �

J=1

Nbox M

�qJ�	 . �31�

Now each box-box interaction is computed once only. Fi-
nally Eq. �31� is used to find the smallest possible value for
p. The determined value of p is always correct for systems
consisting of homogeneously or nearly homogeneously dis-
tributed particles. Depending on the user-requested absolute
energy threshold it is also possible to neglect the entire far
field contribution. Therefore we can define an interval for the
ratio of the exact far field energy E assuming all charges
being either positive or negative and the monopole approxi-
mation E0 of E by

c1 �
E

E0
� c2 �32�

with

c1 = 2 min
i=−2ws−1

2ws+1

min
j=−2ws−1

2ws+1

min
k=−2ws−1

2ws+1

min
−2�gi�2

min
−2�gj�2

min
−2�gk�2

� i2 + j2 + k2

�2i + gi�2 + �2j + gj�2 + �2k + gk�2 ,

max��i�, �j�, �k�� � ws �33�

and

c2 = 2 max
i=−2ws−1

2ws+1

max
j=−2ws−1

2ws+1

max
k=−2ws−1

2ws+1

max
−2�gi�2

max
−2�gj�2

max
−2�gk�2

� i2 + j2 + k2

�2i + gi�2 + �2j + gj�2 + �2k + gk�2 ,

max��i�, �j�, �k�� � ws . �34�

In case ws is equal to 1, c1=�6 /17 and c2=�6 �Fig. 3�. The
limit of c1 and c2 is given by

lim
ws→�

c1 = lim
ws→�

c2 = 1. �35�

Finally we can write

�6/17 � c1 � 1,

�36�
1 � c2 � �6.

The terms c1 and c2 are strictly monotonic increasing, re-
spectively, decreasing with respect to ws �Fig. 4�. The terms
c1 and c2 for 1�ws�10 are shown in Table II.

The monopole approximation E0 of the far field energy
E is defined by

E0 =
1

2�
L

�
K�L�

�
M�K�

��I=1
Nbox K

�qI����J=1
Nbox M

�qJ��
�RK − RM�

= �
L

�
K�L�

�
M�K��K

��I=1
Nbox K

�qI����J=1
Nbox M

�qJ��
�RK − RM�

. �37�

RK= �xK ,yK ,zK�T and RM = �xM ,yM ,zM�T are the coordinates
of the box centers. We can neglect the far field contribution
to the energy completely in case


Ereq � c2E0. �38�

FIG. 2. log10�
Ē̃� as a function of the level of poles.

FIG. 3. The minimal and maximal ratio E /E0 of the exact far field energy E
and the monopole approximation E0 of E for ws=1. The minimal ratio
�6 /17 is illustrated in �a�. The maximal ratio �6 is illustrated in �b�. The
charges q1 and q2 are located in box 1 with origin O1 and box 2 with origin
O2, respectively.

FIG. 4. The terms c1 and c2 as functions of ws.
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B. Second stage of the error estimation scheme

Now we can go a step further to improve our scheme.
After we have set up the FMM tree to achieve the minimum
of computation time �subject of a next paper� assuming a
homogeneous distribution, the positions of all particles must
not be changed anymore. Now we can include the actual
distributions of particles in all boxes on all levels of the
FMM tree in the second stage of our error estimation
scheme. This procedure is necessary because the individual
error contribution of a single particle strongly depends on its
position in the box with respect to the box center. In general
two particles with the same charge contribute very differ-
ently to the energy error in case the first particle is located
near the box center and the second one is located far away
from the center in one of the box corners.

To derive the second stage lets consider the far field
interaction of two separated boxes. We obtain an upper error
limit if we incorporate only the largest of the three distances
dx, dy, and dz with

dx = �xcenter
box 1 − xcenter

box 2� , �39�

dy = �ycenter
box 1 − ycenter

box 2� , �40�

dz = �zcenter
box 1 − zcenter

box 2� , �41�

d = max�dx, dy, dz� . �42�

On a certain level of the FMM tree the distance d can take
ws+1 different values. For the sake of clarity we substitute d

by R. Without loss of generality we can assume the two
boxes are located along the Z axis. The box centers are sepa-
rated by the distance d �Eq. �42��. After we have chosen d,
any rotations about the X, Y, or Z axis by a rotation angle of
k�� /2��k integer� must be without any relevance with re-
spect to the quantity of the error.

The energy of two separated boxes located along the Z
axis18 �Fig. 5� is given by

E = �
l=0

�

�
j=0

�

�
m=−min�j, l�

min�j, l�

�− 1� j+m�lm
box 1�+ 1� j+l �j + l�!

Rj+l+1 �� jm
box 2��

= �
l=0

�

�
j=0

�

�
m=−min�j, l�

min�j, l�

�− 1� j+m�lm
box 2�− 1� j+l �j + l�!

Rj+l+1 �� jm
box 1��.

�43�

The asterisk in Eq. �43� symbolizes the conjugate-complex
of � jm

box 2 and � jm
box 1, respectively. By now we ignore the

charges and the sum over all particles in the multipole mo-
ments. The chargeless versions of the multipole moments are
given by

�lm
box 1 = a1

l 1

�l + m�!
Plm�cos��1��e−im	1 �44�

and

� jm
box 2 = a2

j 1

�j + m�!
Pjm�cos��2��e−im	2. �45�

Now we replace the chargeless multipole moments in
Eq. �43� using Eqs. �44� and �45� and rearrange terms

E =
1

R
�
l=0

�

�
j=0

�

�
m=−min�j, l�

min�j, l�

�− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

=
1

R
�
l=0

�

�
j=0

�

�
m=−min�j, l�

min�j, l�

�− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

. �46�

To derive an expression for the energy error we reformulate Eq. �46�

TABLE II. The terms c1 and c2 for 1�ws�10.

ws c1 c2

1 0.594 088 525 786 004 585 2.449 489 742 783 178 098
2 0.677 003 200 386 330 030 1.683 250 823 060 346 326
3 0.738 548 945 875 996 396 1.477 097 891 751 992 793
4 0.781 735 959 970 571 592 1.354 006 400 772 660 060
5 0.810 380 415 552 132 998 1.279 204 298 133 662 606
6 0.833 739 738 299 376 129 1.233 988 360 045 293 429
7 0.851 858 977 069 655 170 1.199 415 062 114 891 975
8 0.866 025 403 784 438 647 1.173 903 224 498 427 246
9 0.878 203 752 021 909 479 1.154 700 538 379 251 529

10 0.888 065 196 826 467 797 1.138 687 915 757 221 612

FIG. 5. The positions of the two box centers along the Z axis. Subscript 1
refers to box 1 and subscript 2 to box 2, respectively.
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E =
1

2R
�
l=0

�

�
j=0

�

�
m=−min�j, l�

min�j, l� ��− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

+ �− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

	 . �47�

Now we can split the first two sums in Eq. �47�

�
l=0

�

�
j=0

�

¯ = �
l=0

p

�
j=0

p

¯ + �
l=0

p

�
j=p+1

�

¯ + �
l=p+1

�

�
j=0

p

¯ + �
l=p+1

�

�
j=p+1

�

¯ . �48�

Using Eqs. �47� and �48� we obtain an error for the energy E


E =
1

R
�
l=0

p

�
j=p+1

�

�
m=−l

l ��− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

+ �− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

	
+

1

2R
�

l=p+1

�

�
j=p+1

�

�
m=−min�j, l�

min�j, l� ��− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

+ �− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

	 . �49�

To make Eq. �49� more manageable we consider only the terms for 0� l� p+1 and change the summation sequence


E =
1

R
�
l=0

p

�
m=−l

l

�
j=p+1

� ��− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

+ �− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

	
+

1

2R
�

l=p+1

p+1

�
m=−l

l

�
j=p+1

� ��− 1� j+m�a1

R
	l l!

�l + m�!
Plm�cos��1��e−im	1�+ 1� j+l�a2

R
	 j j!

�j + m�!
Pjm�cos��2��eim	2

�j + l�!
j!l!

+ �− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

	 . �50�

For reasons of simplicity we drop the term

�− 1� j+m�a2

R
	l l!

�l + m�!
Plm�cos��2��e−im	2�− 1� j+l�a1

R
	 j j!

�j + m�!
Pjm�cos��1��eim	1

�j + l�!
j!l!

�51�

in both triple sums in Eq. �50� but later on we have to take it
into account as well. We neglect all the remaining terms with
l� p+1 in Eq. �49�. Now we perform the summation step by
step starting with l=0 which gives our first error contribution
of zeroth order with respect to l


El=0 =
1

R
� �

j=p+1

�

�
1� j�a2

R
	 j

Pj0�cos��2��� . �52�

The conventional approach is to take the absolute value of
the product �
1� jPj0�cos��2�� and set �Pj0�cos��2��� to 1. It
certainly provides an upper limit for 
El=0 but the summa-

tion of positive and negative terms to achieve a smaller up-
per error limit is unconsidered and the level of poles p is
overestimated with respect to a user-requested energy thresh-
old. Following the conventional approach we can easily
compute the infinite sum in Eq. �52� yielding


El=0 �
1

R − a2
�a2

R
	p+1

. �53�

To assign Eq. �53� a practical meaning we have to assume
the worst case scenario which means the particle is located in
one of the box corners and the two boxes are separated by
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the smallest possible distance. Such a situation is certainly
not the case for the majority of the particles. Therefore the
level of poles p is overestimated even more. A better and by
far a more practical approach is to apply the absolute value
as late as possible and to incorporate error terms of higher
order. Our scheme proceeds as follows. We apply a space
domain decomposition in one of the interacting boxes. We
divide this box into 85 grid boxes obtaining 323 grid points at
the centers of the grid boxes. We include additional grid
points on each coordinate axis yielding a total of 333 grid
points. Now we compute the sum in Eq. �52� for each grid
point and for �−1� j and �+1� j separately, take the maximum
and store the values F0p�a2 , �2� as constants in a library

F0p�a2, �2� = max
s=−1, 1

� �
j=p+1

�

sj�a2

R
	 j

Pj0�cos��2��� . �54�

After computing the error contribution of zeroth order we
proceed with the first order error contribution. The error term
of the first order 
El=1 depends on the coordinates of both
particles and is given by


El=1 =
c1

R
�a1

R
	�P10�cos��1�� �

j=p+1

�

�
1� j

��a2

R
	 j

�j + 1�Pj0�cos��2��

− P11�cos��1��cos�	1 − 	2�

� �
j=p+1

�

�
1� j�a2

R
	 j

Pj1�cos��2���,

c1 = �1

2
, p = 0

1, p � 0.

 �55�

In our scheme we include all possible values of a1. A box
with coordinate ranges �−1, . . . ,1 , −1 , . . . ,1 , −1 , . . . ,1�
allows all values from 0 to �3. The angles �1 and 	1 are
treated differently. We include only the following 8 combi-
nations of the angles �1�0��1��� and 	1�0�	1�2��

�1� cos��1, 1� = +
�3

3
, cos�	1, 1� = +

�2

2
, sin�	1, 1� = +

�2

2
,

�2� cos��1, 2� = +
�3

3
, cos�	1, 2� = −

�2

2
, sin�	1, 2� = +

�2

2
,

�3� cos��1, 3� = +
�3

3
, cos�	1, 3� = −

�2

2
, sin�	1, 3� = −

�2

2
,

�4� cos��1, 4� = +
�3

3
, cos�	1, 4� = +

�2

2
, sin�	1, 4� = −

�2

2
,

�5� cos��1, 5� = −
�3

3
, cos�	1, 5� = +

�2

2
, sin�	1, 5� = +

�2

2
,

�6� cos��1, 6� = −
�3

3
, cos�	1, 6� = −

�2

2
, sin�	1, 6� = +

�2

2
,

�7� cos��1, 7� = −
�3

3
, cos�	1, 7� = −

�2

2
, sin�	1, 7� = −

�2

2
,

�8� cos��1, 8� = −
�3

3
, cos�	1, 8� = +

�2

2
, sin�	1, 8� = −

�2

2
.

�56�

These eight combinations and a1�0�a1��3� represent po-
sitions on the connecting lines from the box center to the
eight corners of the box.

Now we compute the expression

�P10�cos��1�� �
j=p+1

�

�
1� j�a2

R
	 j

�j + 1�Pj0�cos��2��

− P11�cos��1��cos�	1 − 	2� �
j=p+1

�

�
1� j�a2

R
	 j

Pj1�cos��2���
�57�

for each grid point �a2 , �2 , 	2�. The term �
1� j and the
eight combinations of the angles �1 and 	1 require 16 com-
putations for each grid point. We compute the maximum of
the 16 combinations and store the value as a function of the
grid point �a2 , �2 , 	2� in a library. Similar to Eq. �54� we
define the elements F1p�a2 , �2 , 	2� as follows:

F1p�a2, �2, 	2� = max
n=1

8

max
s=−1, 1

�P10�cos��1, n��

� �
j=p+1

�

sj�a2

R
	 j

�j + 1�Pj0�cos��2��

− P11�cos��1, n��cos�	1, n − 	2�

� �
j=p+1

�

sj�a2

R
	 j

Pj1�cos��2��� . �58�

The error term of the second order is given by
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El=2 =
c2

R
�a1

R
	2� 1

2
P20�cos��1�� �

j=p+1

�

�
1� j�a2

R
	 j

�j + 1��j + 2�Pj0�cos��2�� −
1

3
P21�cos��1��cos�	1 − 	2� �

j=p+1

�

�
1� j

��a2

R
	 j

�j + 2�Pj1�cos��2�� +
1

12
P22�cos��1��cos�2�	1 − 	2�� �

j=p+1

�

�
1� j�a2

R
	 j

Pj2�cos��2���, c2 = �
0, p � 1

1

2
, p = 1

1, p � 1.



�59�

Similar to Eqs. �54� and �58� we define the elements F2p�a2 , �2 , 	2� as follows:

F2p�a2, �2, 	2� = max
n=1

8

max
s=−1, 1

� 1

2
P20�cos��1, n�� �

j=p+1

�

sj�a2

R
	 j

�j + 1��j + 2�Pj0�cos��2�� −
1

3
P21�cos��1, n��cos�	1, n − 	2�

� �
j=p+1

�

sj�a2

R
	 j

�j + 2�Pj1�cos��2�� +
1

12
P22�cos��1, n��cos�2�	1, n − 	2�� �

j=p+1

�

sj�a2

R
	 j

Pj2�cos��2��� . �60�

The error term of general order q is given by


El=q =
cq

R
�a1

R
	q� 1

q!
Pq0�cos��1�� �

j=p+1

�

�
1� j�a2

R
	 j �j + q�!

j!
Pj0�cos��2�� + 2�

m=1

q

�− 1�m 1

�q + m�!
Pqm�cos��1��cos�m�	1 − 	2��

� �
j=p+1

�

�
1� j�a2

R
	 j �j + q�!

�j + m�!
Pjm�cos��2���, cq = �

0, p � q − 1

1

2
, p = q − 1

1, p � q − 1,

 q � 1. �61�

Similar to Eqs. �54�, �58�, and �60� we define the elements Fqp�a2 , �2 , 	2� as follows:

Fqp�a2, �2, 	2� = max
n=1

8

max
s=−1, 1

� 1

q!
Pq0�cos��1, n�� �

j=p+1

�

sj�a2

R
	 j �j + q�!

j!
Pj0�cos��2�� + 2�

m=1

q

�− 1�m

�
1

�q + m�!
Pqm�cos��1, n��cos�m�	1, n − 	2�� �

j=p+1

�

sj�a2

R
	 j �j + q�!

�j + m�!
Pjm�cos��2���, q � 0. �62�

We take all the elements Fqp with p�0 and 0�q� p+1 into account. To ensure symmetry we must use the Cartesian
representation of Fqp with respect to the Cartesian axes X, Y, and Z. Assuming that each Cartesian coordinate ranges from �1
to 1 �−1, . . . ,1 , −1 , . . . ,1 , −1 , . . . ,1� we introduce the elements Hqp as follows:

Hqp�x2, y2, z2� = max�Fqp�sxx2, syy2, szz2�,

Fqp�sxx2, szz2, syy2�,

Fqp�syy2, sxx2, szz2�,

Fqp�syy2, szz2, sxx2�,

Fqp�szz2, sxx2, syy2�,

Fqp�szz2, syy2 ,sxx2�� ,

p � 0, 0 � q � p + 1,

x2 = −
31

32
, −

29

32
, . . . , −

1

32
, 0,

1

32
, . . . ,

29

32
,

31

32
,

�63�

y2 = −
31

32
, −

29

32
, . . . , −

1

32
, 0,

1

32
, . . . ,

29

32
,

31

32
,

z2 = −
31

32
, −

29

32
, . . . , −

1

32
, 0,

1

32
, . . . ,

29

32
,

31

32
,

sx = 
 1, sy = 
 1, sz = 
 1.

Due to symmetry we have to store only 969 grid points in-
stead of 333 for each element Hqp. Equations �42� and �63�
define a replacement system which has an energy error
greater than or equal to the energy error of the original sys-
tem. After we have derived the error terms of the second box
we still have to include the neglected components of the first
box. Because we did not apply a space domain decomposi-
tion in both boxes the only untreated coordinate is a1, the
distance of a particle in box A to the box center. Now we
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include all particles of the first box, thus we change the no-
tation of a1 to aI. We simply have to calculate the terms fn

given by

fn
box A = �

I=1

Nbox A

�qI��aI

R
	n

. �64�

In Eq. �64� qI is a particle charge. We compute the sum in
Eq. �64� for n=0, 4 , 9 , 18, 36, 45 for each box on each
level of the FMM tree using a look-up table to minimize the
computational effort. For two separated boxes we treat all
possible ws+1 displacements �s=1, . . . ,ws+1� of the two
box centers in 1D �Eq. �42�� separately. Now we can modify
Eq. �64� slightly

fns
box A = �R1

Rs
	n

�
I=1

Nbox A

�qI�� aI

R1
	n

, 0 � aI �
�3

2L ,

Rs =
ws + s

2L−1 , s = 1, . . . ,ws + 1, �65�

0 � � aI

R1
	 �

�3

2�ws + 1�
.

The elements fns
box A allow to compute the global error terms

QnsL

QnsL�G� = 2 �
B�L�

max
A�s,B�

Q̃G
box Bfns

box A, s = 1, . . . ,ws + 1,

�66�
n = 0, 4, 9, 18, 36, 45

with

Q̃G
box B = �

JB�G�
�qJB

� . �67�

The term qJB
represents a charge in the corresponding grid

box. The interaction list A�s , B� in Eq. �66� covers all boxes
which have a far field interaction with box B separated by Rs

in 1D. The neglected term �Eq. �51�� is taken into account by
the summation over B in Eq. �66� when we combine the QnsL

with the grid contribution of box B. Because we take the
maximum and do not sum up in Eq. �66� we have to multiply
by a factor of 2 to maintain the symmetry with respect to the
error contribution, since the symmetry condition B=Cm with

Am = max
A�s,B�

fns
box A �68�

and

Cm = max
C�s,Am�

fns
box C �69�

is usually not satisfied.
Because we compute the terms QnsL only for

n=0, 4 , 9 , 18, 36, 45 we use an interpolation scheme to
obtain the missing values. In case the box contains two or
more particles or the particle is not located in the box center
the following relations:

Q0, sL � Q4, sL � Q9, sL � Q18, sL � Q36, sL � Q45, sL � 0

�70�

are satisfied. This scheme has to ensure the correct
asymptotic behavior for infinite n. The complete set of the
elements QnsL is given by

QnsL =�
Q0, 4; sL, 0 � n � 4

Q4, 9; sL, 4 � n � 9

Q9, 18; sL, 9 � n � 18

Q18, 36; sL, 18 � n � 36

Q36, 45; sL, 36 � n � � .

 �71�

The interpolation scheme can be described as follows. We
start with the term Q36, 45; sL using the terms Q36, sL and
Q45, sL and an exponential interpolation ansatz. Q36, 45; sL is
now given by

Q36, 45; sL =
Q36, sL

5

Q45, sL
4 ��9 Q45, sL

Q36, sL
	n

. �72�

All the remaining terms in Eq. �71� can now easily be deter-
mined. Again, we use an exponential interpolation ansatz to
determine the term Q18, 36; sL

Q18, 36; sL = eA18, 36; sLn2+B18, 36; sLn+C18, 36; sL. �73�

The coefficients A18, 36; sL, B18, 36; sL, and C18, 36; sL can be
obtained from the following system of equations:

Q18, 36; sL�18� = Q18, sL

Q18, 36; sL�36� = Q36, sL �74�

dQ18, 36; sL�36�
dn

=
dQ36, 45; sL�36�

dn
.

The first derivative of Q18, 36; sL must be less than 0 and the
curvature

d2Q
18, 36; sL

dn2

�1 +� dQ
18, 36; sL

dn
	2

3
�75�

greater than 0 for 18�n�36. In case the coefficients
A18, 36; sL, B18, 36; sL, and C18, 36; sL do not satisfy the two
conditions

dQ18, 36; sL

dn
� 0,

d2Q18, 36; sL

dn2 � 0, 18 � n � 36 �76�

which are identical to
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2A18, 36; sLn + B18, 36; sL � 0,

�77�
�2A18, 36; sLn + B18, 36; sL�2 + 2A18, 36; sL � 0, 18 � n � 36

and in case A18, 36; sL�0

B18, 36; sL�2�A18, 36; sL�n,

�2A18, 36; sLn + B18, 36; sL���2�A18, 36; sL� , �78�

A18, 36; sL � 0, 18 � n � 36

we ignore the demand for differentiability. The coefficients
are now given by the following system of equations:

A18, 36; sL = 0

Q18, 36; sL�18� = Q18, sL �79�

Q18, 36; sL�36� = Q36, sL.

The terms Q9, 18; sL, Q4, 9; sL, and Q0, 4; sL are determined
similarly in the given order. The elements QnsL �Eq. �71�� are
strictly monotonic decreasing with respect to n. It should be
noted, that our interpolation scheme provides a sufficient ac-
curacy to our FMM error estimation scheme.

Finally we obtain a relation between the level of poles
p and a user-requested absolute energy threshold

Ereq �
Ereq�0�


Ereq � �
L

�
G

max
s=1

ws+1 1

Rs
�ws + 1

ws + s
	p+1

max�Q0sL�G�H0p�G� + cQ1sL�G�H1p�G�,

Q0sL�G�H0p�G�, . . . ,QpsL�G�Hpp�G�,
1

2
Qp+1, sL�G�Hp+1, p�G�	, c = �1

2
, p = 0

1, p � 0

 �80�

with

Rs =
ws + s

2L−1 . �81�

Because of the factor 1/2 in front of the second triple sum in Eq. �50� we have to multiply the product Qp+1, sL�G�Hp+1, p�G�
by 1/2. All terms H0,. . .,p+1, p contain the common factor R−�p+1� which is leading to the term ��ws+1� / �ws+s��p+1 in Eq. �80�.
Now we are able to obtain the final relation to determine p


Ereq � �
L

�
G

max
s=1

ws+1 2L−1

ws + 1
�ws + 1

ws + s
	p+2

max�Q0sL�G�H0p�G� + cQ1sL�G�H1p�G�,

Q0sL�G�H0p�G�, . . . ,QpsL�G�Hpp�G�,
1

2
Qp+1, sL�G�Hp+1, p�G�	, c = �1

2
, p = 0

1, p � 0.

 �82�

In case far field contributions of the energy have to be taken into account �Eq. �38�� we obtain the minimal level of poles when
we start at p=0 and increment p until the right hand side of Eq. �82� is less than or equal to 
Ereq.

In addition we can also compute an approximation of the error 
E for p=0 by a power series expansion of the particle
positions with respect to the box centers. Assuming RK= �xK ,yK ,zK�T and RM = �xM ,yM ,zM�T are the coordinates of the centers
of box K and box M, respectively, we can write

E =
1

2�
L

�
K�L�

�
M�K�

�
k=1

NK

�
m=1

NM qkqm

��xk − xm�2 + �yk − ym�2 + �zk − zm�2
. �83�

The upper bounds NK and NM indicate the number of particles in the boxes. The energy error can be written as follows


Ep=0 =
1

2�
L

�
I�L�

�
J�I�
���

i=1

NI �E

�xi
�RI, RJ��xi − xI�� + ��

i=1

NI �E

�yi
�RI, RJ��yi − yI�� + ��

i=1

NI �E

�zi
�RI, RJ��zi − zI��

+ ��
j=1

NJ �E

�xj
�RI, RJ��xj − xJ�� + ��

j=1

NJ �E

�yj
�RI, RJ��yj − yJ�� + ��

j=1

NJ �E

�zj
�RI, RJ��zj − zJ��

+ ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�xi � xj

�xi − xI��xj − xJ�� + ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�xi � yj

�xi − xI��yj − yJ��
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+ ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�xi � zj

�xi − xI��zj − zJ�� + ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�yi � xj

�yi − yI��xj − xJ��
+ ��

i=1

NI

�
j=1

NJ �2E�RI, RJ�
�yi � yj

�yi − yI��yj − yJ�� + ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�yi � zj

�yi − yI��zj − zJ��
+ ��

i=1

NI

�
j=1

NJ �2E�RI, RJ�
�zi � xj

�zi − zI��xj − xJ�� + ��
i=1

NI

�
j=1

NJ �2E�RI, RJ�
�zi � yj

�zi − zI��yj − yJ��
+ ��

i=1

NI

�
j=1

NJ �2E�RI, RJ�
�zi � zj

�zi − zI��zj − zJ��	 . �84�

If we neglect the absolute value of each term in Eq. �84� and
compute the right hand side of Eq. �84� we obtain the far
field energy for p=1, Ep=1 minus the far field energy for
p=0, Ep=0

Ep=1 − Ep=0 =
1

2�
L

�
I�L�

�
J�I�

�
l=0

1

�
m=−l

l

�
j=0

1

�
k=−j

j

�− 1� j

��lm�RI�Bj+l, k+m� jk�RJ�

−
1

2�
L

�
I�L�

�
J�I�

�00�RI�
1

�RI − RJ�
�00�RJ�

�85�

with

�00 = �
k=1

NK

qk, �86�

�10 = �
k=1

NK

qk�zk − zK� , �87�

�11 =
1

2�
k=1

NK

qk��xk − xK� − i�yk − yK�� , �88�

and

�1,−1 = −
1

2�
k=1

NK

qk��xk − xK� + i�yk − yK�� . �89�

The terms Bj+l, k+m represent the elements of the operator
B.4,5 In Eq. �84� we sum over all levels and all box-box
interactions and neglect all contributions of higher order. The
partial derivatives in Eq. �84� depend only on particle
charges and the differences xI−xJ, yI−yJ, and zI−zJ.
The Cartesian coordinates xI, yI, and zI as well as xJ, yJ, and
zJ are the coordinates of the box centers. We have to compute
the terms

��
k=1

NK

qk�, ��
k=1

NK

qk�xk − xK��, ��
k=1

NK

qk�yk − yK�� ,

�90�

��
k=1

NK

qk�zk − zK��
for all boxes on all levels of the FMM tree in order to com-
pute 
Ep=0 �Eq. �84��. Usually 
Ep=0 is not very different
from the right hand side of Eq. �82� for p=0. Now we can
use the relation


Ereq � max��
L

�
G

max
s=1

ws+1 2L−1

ws + 1
�ws + 1

ws + s
	2�Q0sL�G�H00�G� +

1

2
Q1sL�G�H10�G�	, 
Ep=0	 �91�

in addition to Eq. �82� to improve the FMM error estimation scheme for p=0. We can combine Eqs. �82� and �91� using the
Kronecker delta �0p


Ereq � max��
L

�
G

max
s=1

ws+1 2L−1

ws + 1
�ws + 1

ws + s
	p+2

max�Q0sL�G�H0p�G� + cQ1sL�G�H1p�G�,

Q0sL�G�H0p�G�, . . . ,QpsL�G�Hpp�G�,
1

2
Qp+1, sL�G�Hp+1, p�G�	, �0p
Ep=0	, c = �1

2
, p = 0

1, p � 0.

 �92�
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III. RESULTS

We have verified the correctness of our FMM error esti-
mation scheme by many test calculations. Homogeneous as
well as inhomogeneous distributions have been tested. Table
III shows the results for a particle system consisting of
100 000 particles each with charge 1 distributed along the Z
axis which represents a system of inhomogeneously distrib-
uted particles in 3D. Table IV shows the results for a clus-
tered particle system which is a result of a laser-induced
Coulomb explosion12–16 �Fig. 6�. This figure shows the same
particle distribution with different zoom levels to visualize
the strong clustering. We have performed all reference cal-
culations in quadruple precision �128 bits for the representa-

tion of a floating point number� to exclude any numerical
errors. In the ANSI/IEEE standard the relative error of the
binary representation of floating point numbers in double
precision is 2−52�2.220�10−16. However, the absolute en-
ergy error of 0.0171�10−7 in Table IV is equivalent to a
relative energy error of 8.615�10−17 which is less than 2−52.
In addition we had to ensure an exact computation of the
near field contributions which is possible only in quadruple
precision for relative errors in the range of 2−52. The FMM
errors do not exceed the user-requested energy thresholds.
The results shown in Tables III and IV prove the correctness
of our approach. Table V shows the comparison of our FMM
error estimation scheme with two other approaches for the

FIG. 6. 2D representation of a particle system as a result of a laser-induced Coulomb explosion. The two axes range �a� from 0 to 1, all 114 537 particles in
100% of the volume, �b� from 0.4375 to 0.5625, 78 946 particles �68.9% of all particles� in 1/512 of the volume, �c� from 0.492 187 5 to 0.507 812 5, 41 684
particles �36.4% of all particles� in 1/262 144 of the volume, and �d� from 0.499 023 437 5 to 0.500 976 562 5, 21 892 particles �19.1% of all particles� in
1/134 217 728 of the volume of the simulation box are shown.
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FMM separation criterion ws=1. The last two columns of
Table V show the solutions of the following two equations
proposed by White and Head-Gordon4


Ereq
truncation �

1

2�
L

�
K�L�

�
M�K�

��I=1
Nbox K

�qI����J=1
Nbox M

�qJ��
�3 − �3�2−L

��3

3
	p+1

�93�

and


Ereq
operator B �

1

2�
L

�
K�L�

�
M�K�

��I=1
Nbox K

�qI����J=1
Nbox M

�qJ��
�4 − 2�3�2−L

��3

2
	p+1

. �94�

Equation �93� may overestimate and underestimate the level

of poles depending on the user-requested energy threshold.
Table V and Fig. 7 show a crossover point at a user-
requested absolute energy threshold of 10−3 with respect to
the level of poles. For higher levels of poles the error due to
the use of operator B is dominant. Equation �94� always
highly overestimates the level of poles. Therefore this error
estimation is without any practical relevance. Table VI shows
the ratio of the computational effort in the multipole-to-local
translations resulting from our FMM error estimation scheme
and the error estimator which includes the error from the
truncation of the expansions but ignores the error as a con-
sequence of the use of operator B. To compare our FMM
error estimation approach against Chebyshev based schemes

TABLE III. Comparison of user-requested absolute energy errors
with the absolute energy errors of FMM calculations
for a system consisting of 100 000 particles each with charge 1 distributed
along the Z axis �xi=0, yi=0, zi= i , i=1, . . . ,100 000�.
Eexact=1 109 014.612 986 342 794 736.

Requested error Level of poles FMM energy error

10+6 0 0.0384�10+6

10+5 2 0.1237�10+5

10+4 5 0.0785�10+4

10+3 8 0.0039�10+3

10+2 12 0.0385�10+2

10+1 17 0.0311�10+1

10+0 22 0.0390�10+0

10−1 27 0.0494�10−1

10−2 32 0.0767�10−2

10−3 38 0.0435�10−3

10−4 44 0.0180�10−4

10−5 50 0.0444�10−5

TABLE IV. Comparison of user-requested absolute energy errors
with the absolute energy errors of FMM calculations for a system
consisting of 114 537 inhomogeneously distributed positive charges.
Eexact=19 812 647.020 360 131 248 825.

Requested error Level of poles FMM energy error

10+7 0 0.1163�10+7

10+6 1 0.0512�10+6

10+5 3 0.0681�10+5

10+4 5 0.0185�10+4

10+3 7 0.0020�10+3

10+2 8 0.0251�10+2

10+1 10 0.0213�10+1

10+0 14 0.0169�10+0

10−1 18 0.0089�10−1

10−2 22 0.0145�10−2

10−3 27 0.0130�10−3

10−4 32 0.0064�10−4

10−5 37 0.0195�10−5

10−6 42 0.0098�10−6

10−7 48 0.0171�10−7

TABLE V. Levels of poles for three different error estimators depending on
user-requested absolute energy errors for a system consisting of 100 000
particles each with charge 1 distributed along the Z axis �xi=0, yi=0,
zi= i , i=1, . . . ,100 000�. The second column shows the levels of poles as a
result of our FMM error estimation scheme. The next two columns show the
levels of poles due to the truncation of the expansions and the use of opera-
tor B, respectively, �Ref. 4�. The FMM separation criterion ws is equal to 1.

Requested
error

FMM error
estimation scheme

Truncation of
expansions Operator B

10+6 0 1 11
10+5 2 5 26
10+4 5 9 41
10+3 8 13 57
10+2 12 18 72
10+1 17 22 88
10+0 22 26 103
10−1 27 30 119
10−2 32 34 135
10−3 38 38 151
10−4 44 42 165
10−5 50 46 181

FIG. 7. Levels of poles for three different error estimators depending on
user-requested absolute energy errors for a system consisting of 100 000
particles each with charge 1 distributed along the Z axis �xi=0, yi=0,
zi= i , i=1, . . . ,100 000�. The solid line shows the level of poles as a result
of our FMM error estimation scheme. The dashed and dot-dashed lines show
the level of poles due to the truncation of the expansions and the use of
operator B, respectively �Ref. 4�. The FMM separation criterion ws is equal
to 1. The solid and dashed line show a crossover point at a user-requested
absolute energy error of 10−3.
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we will use Eq. �93� to formulate a Chebyshev based FMM.
We substitute the infinite sum

�
l=0

�

Pl�cos������3

3
	l

�95�

by a continuous Chebyshev expansion

�
l=0

�

Pl�cos������3

3
	l

= �
n=0

�

cnTn�cos���� �96�

with

cn =
2

�1 + �0n�� �
m=0

� ��3

3
	m


0

�

Pm�cos����Tn�cos����d� .

�97�

The terms Tn are the Chebyshev polynomials of the first kind
with the property



0

�

Tm�cos����Tn�cos����d� = �1 + �0m�
�

2
�mn. �98�

The first coefficients of the continuous Chebyshev expansion
are shown in Table VII. Equation �93� can now be improved


Ereq
Chebyshev �

1

2�
L

�
K�L�

�
M�K�

��I=1
Nbox K

�qI����J=1
Nbox M

�qJ��
3 � 2−L

� �
n=p+1

�

�cn� . �99�

Table VIII shows the result of the Chebyshev economization.
The improvement in comparison to Eq. �93� is marginal. De-
pending on the user-requested relative energy error the levels
of poles are certainly smaller but not much. Even in case
Chebyshev economization is used our FMM error estimation
scheme is still much more efficient �Table VIII�. The levels
of poles determined by the first and second stage of our
FMM error estimation scheme should be approximately the
same for systems consisting of homogeneously distributed
particles with uniform charge. Table IX shows that for a
range of user-requested relative energy errors the levels of
poles satisfy this condition. The overall behavior of our
FMM error estimation scheme is also O�N� with respect to
the number of particles N �Table X� because the prefactor of
the O�N log N� scaling part, the computation of the terms
fn

box A �Eq. �64�� on each level of the FMM tree is very small
and seems to be negligible. The Tables XI and XII show that
operator C does not have any impact on the FMM results.
Table XI shows the errors of two FMM calculations, one
with use of the operator C and the second one without for
single �floating point numbers �FPN� in 32 bits representa-
tion�, double �FPN in 64 bits representation�, and quadruple

TABLE VI. Levels of poles for two different error estimators depending on
user-requested relative energy errors and the resulting ratios of the number
of floating point operations in the multipole-to-local translations of the ro-
tation based FMM for 87 homogeneously distributed particles each with
charge 1. The Cartesian coordinates are given by xi=2−7i−2−8 ,
yj =2−7j−2−8 , zk=2−7k−2−8 , i , j , k=1, . . . ,27.

Requested
error

FMM error
estimation scheme

Truncation of
expansions Ratio

10−01 0 6 863.0
10−02 1 11 156.9
10−03 3 15 50.8
10−04 5 19 31.4
10−05 7 23 23.8
10−06 9 27 19.8
10−07 12 32 15.1
10−08 15 36 11.6
10−09 19 40 8.2
10−10 22 44 7.2
10−11 27 48 5.2
10−12 31 52 4.4
10−13 36 57 3.8
10−14 41 61 3.2
10−15 47 65 2.6

TABLE VII. The first coefficients of the continuous Chebyshev expansion.

n cn

0 1.103 845 772 797 212 254 324 837 694 207 631 41�10+0

1 6.695 374 010 430 205 408 788 168 498 427 249 92�10−1

2 2.949 230 814 010 860 474 878 727 980 796 395 52�10−1

3 1.431 541 047 730 706 872 850 138 697 133 513 40�10−1

4 7.271 229 360 379 197 232 089 297 595 186 401 43�10−2

5 3.792 178 441 399 177 265 686 781 031 292 715 29�10−2

6 2.012 322 319 533 058 507 666 497 404 019 992 53�10−2

7 1.081 011 470 983 601 176 693 107 630 403 385 75�10−2

8 5.860 437 744 773 163 461 910 887 476 344 235 66�10−3

9 3.199 641 127 137 935 053 370 857 369 821 271 15�10−3

10 1.756 796 962 916 457 779 346 996 992 861 958 00�10−3

TABLE VIII. Levels of poles for two different error estimators depending
on user-requested relative energy errors and the resulting ratios of the num-
ber of floating point operations in the multipole-to-local translations of the
rotation based FMM for 87 homogeneously distributed particles each with
charge 1. The standard error estimation is improved by Chebyshev econo-
mization. The Cartesian coordinates are given by xi=2−7i−2−8 ,
yj =2−7j−2−8 , zk=2−7k−2−8 , i , j , k=1, . . . ,27.

Requested
error

FMM error
estimation scheme

Chebyshev
economization Ratio

10−01 0 5 559.5
10−02 1 9 93.1
10−03 3 13 34.5
10−04 5 17 23.1
10−05 7 21 18.4
10−06 9 25 15.9
10−07 12 29 11.4
10−08 15 33 9.1
10−09 19 37 6.6
10−10 22 41 5.9
10−11 27 45 4.3
10−12 31 49 3.7
10−13 36 54 3.2
10−14 41 58 2.7
10−15 47 62 2.2
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precision �FPN in 128 bits representation�. We have com-
pared four results, the energy computed by the product of
multipole moments and Taylor coefficients

E1 =
1

2�
L

�
I�L�

�
l=0

p

�
m=−l

l

�lm
box I�lm

box I,

�100�

E1
C =

1

2 �
I�Depth+1�

�
l=0

p

�
m=−l

l

�lm
C, box I�lm

C, box I,

the energy computed from the potential

E2 =
1

2�
i=1

N

qi�i,

�101�

E2
C =

1

2�
i=1

N

qi�i
C,

and finally the components of the potential and gradient.
Now we can define the following relative errors


1 =
�E1 − E1

C�
min��E1�, �E1

C��
, �102�


2 =
�E2 − E2

C�
min��E2�, �E2

C��
, �103�


3 = max
i=1

N � ��i − �i
C�

min���i�, ��i
C��
	 , �104�

and


4 = max
i=1

N � ��i − �i
C�

min���i�, ��i
C��
	 . �105�

We have done the calculations on the particle system shown
in Table IV and in Fig. 6 for a user-requested absolute energy
error of 
Ereq=10 �N=114537, p=10, Depth=7�. The en-
ergies and all components of the potential and gradient are
nonzero. Table XII shows that 
1, 
2, 
3, and 
4 completely
utilize the precision increase of the binary floating point rep-
resentation by changing from double to quadruple precision.

IV. SUMMARY

We have presented a two-stage error estimation scheme.
It incorporates the error contribution of each particle to the
FMM error and can be applied to homogeneous as well as
inhomogeneous particle systems. The FMM error is corre-
lated with a user-requested threshold. In our current FMM
implementation this threshold is either the absolute or rela-
tive energy error. In the first stage of our error estimation
scheme homogeneous distributions in all boxes on all tree
levels are assumed. In case a relative energy error is speci-
fied we have to compute an approximation of the energy to
obtain the absolute energy error used in the error estimation
scheme. The far field energy is approximated by the mono-
pole energy. Additionally we have developed an approach to
estimate the energy contribution of the interaction of charges
in a single box as accurate as possible. After the first stage is
conducted the far field energy is approximated by the mono-
pole approximation and by a Cartesian energy expansion of
first and second order with respect to the particle positions
relative to the box centers to incorporate monopole and di-
pole contributions. In addition we have taken into account
contributions of higher order to compute the far field energy
for particle systems with high symmetry as accurate as pos-
sible. The near field energy is always computed before the
second stage is carried out. In case a relative energy error is
specified the computation of the corresponding absolute error
is more accurate compared to the first stage.

The constants used in the error estimation scheme have
to be computed separately for each value of the FMM sepa-
ration criterion ws. We have implemented a procedure to
minimize the computation time with respect to the separation
in the near and far field part. Using this procedure we have
always obtained the best runtime behavior for the separation
criterion ws=1. The increase in the total runtime as a conse-
quence of our error estimation scheme is negligible because
most of the necessary data is precomputed and stored as

TABLE IX. Comparison of the levels of poles determined by the first and
second stage of the FMM error estimation scheme for 87 homogeneously
distributed particles each with charge 1. The requested errors are user-
requested relative energy errors. The Cartesian coordinates are given by
xi=2−7i−2−8 , yj =2−7j−2−8 , zk=2−7k−2−8 , i , j , k=1, . . . ,27.

Requested
error

Level of poles
�first stage�

Level of poles
�second stage�

10−01 0 0
10−02 2 1
10−03 3 3
10−04 5 5
10−05 7 7
10−06 10 9
10−07 12 12
10−08 15 15
10−09 19 19
10−10 23 22
10−11 27 27
10−12 32 31
10−13 37 36
10−14 42 41
10−15 48 47

TABLE X. Scaling of the two stages of the FMM error estimation scheme
with respect to the number of particles N for homogeneously distributed
particles each with charge 1. The numbers in columns 2–4 show the increase
in the number of floating point operations with respect to the eight times
smaller particle system. The scaling is O�N�.

Number of particles First stage Second stage First and second stage

86 9.501 9.574 9.565
87 9.058 8.942 8.956
88 8.814 8.642 8.663
89 8.678 8.509 8.530
810 8.596 8.435 8.456
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constants in a library. Our scheme can easily be modified to
treat a user-requested threshold with respect to an absolute
error bound for the components of the potential or the gra-
dient. Therewith it gives the possibility to specify up to three
different thresholds, one for the energy, a second one for the
components of the potential, and another one for the compo-
nents of the gradient. In case the FMM is extended to other
potentials or periodic boundary conditions �subject of a next
paper� our error estimation scheme can easily be adapted.

Finally it should be noted, that the equations we have
presented are mathematical representations of the method
and potentially not the most computationally efficient.

APPENDIX A: FMM NOTATION

Our mathematical representation of the FMM is based
on the notation used by White and Head-Gordon.4,5 We con-
sider two separated boxes �Fig. 1�. The multipole moments
of the boxes are defined as follows:

�lm
box 1 = �

I=1

Nbox 1

qIaI
l 1

�l + m�!
Plm�cos��I��e−im	I �A1�

and

� jk
box 2 = �

J=1

Nbox 2

qJaJ
j 1

�j + k�!
Pjk�cos��J��e−ik	J. �A2�

The upper bounds Nbox 1 and Nbox 2 represent the numbers of
particles in the boxes. qI and qJ are the charges of particle I
in box 1 and particle J in box 2, respectively. aI, �I, and 	I as
well as aJ, �J, and 	J define the particle positions with re-
spect to the box centers. The energy is given by

E = �
l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j

�− 1� j�lm
box 1 Bj+l, k+m�R2 − R1�� jk

box 2

= �
l=0

�

�
m=−l

l

�
j=0

�

�
k=−j

j

�− 1�l�lm
box 2 Bj+l, k+m�R2 − R1�� jk

box 1

�A3�

with

Bj+l, k+m =
1

Rj+l+1 �j + l − k − m�!Pj+l, k+m�cos����ei�k+m��,

R = ��x2 − x1�2 + �y2 − y1�2 + �z2 − z1�2, cos��� =
z2 − z1

R
,

�A4�

cos��� = � x2 − x1

��x2 − x1�2 + �y2 − y1�2
, cos2��� � 1

1, cos2��� = 1,



sin��� = � y2 − y1

��x2 − x1�2 + �y2 − y1�2
, cos2��� � 1

0, cos2��� = 1.



The elements of operator B satisfy the condition

Bj+l, k+m�R1 − R2� = �− 1� j+lBj+l, k+m�R2 − R1� . �A5�

In comparison to the notation used by White and
Head-Gordon4,5 we write the operator B as a double sub-
scripted array. The spherical coordinates R, �, and � depend
on the relative position of the two box centers represented by
R1= �x1 ,y1 ,z1�T and R2= �x2 ,y2 ,z2�T to each other. Now we
can define Taylor coefficients for the two boxes

�lm
box 1 = �

j=0

�

�
k=−j

j

�− 1� jBj+l, k+m�R2 − R1�� jk
box 2 �A6�

and

TABLE XI. Comparison of relative errors of two FMM calculations, one with use of the operator C
�local-to-local translation� and the second one without for single, double, and quadruple precision. The thresh-
old � depends on the length of the mantissa in the binary floating point representation.

� 
1 
2 
3 
4

2−23�1.192�10−07 2.019�10−07 1.192�10−07 8.241�10−07 1.289�10−03

2−52�2.220�10−16 7.521�10−16 2.220�10−16 1.717�10−15 5.773�10−08

2−112�1.926�10−34 3.262�10−34 1.926�10−34 1.005�10−33 1.558�10−26

TABLE XII. The utilization of precision increase of the binary floating point representation. The relative errors
of energies, potential, and gradient decrease in the same manner as the length of the mantissa increases from 52
�double precision �d� to 112 �quadruple precision �q�.

��q

�d
� 
1��q�


1��d�


2��q�


2��d�


3��q�


3��d�


4��q�


4��d�

2−60�8.674�10−19 4.337�10−19 8.674�10−19 5.849�10−19 2.698�10−19
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�lm
box 2 = �

j=0

�

�
k=−j

j

�− 1�lBj+l, k+m�R2 − R1�� jk
box 1. �A7�

The multipole moments and the Taylor coefficients can be
combined to compute the energy

E = �
l=0

�

�
m=−l

l

�lm
box 1�lm

box 1 = �
l=0

�

�
m=−l

l

�lm
box 2�lm

box 2

=
1

2�
l=0

�

�
m=−l

l

��lm
box 1�lm

box 1 + �lm
box 2�lm

box 2� . �A8�

The multipole moments and the Taylor coefficients can be
translated in space by using the operators A and C,
respectively.4,5 The rotation based FMM4,5 reduces the O�p4�
scaling to O�p3�. In our FMM implementation the elements
of operator B range from B00 to B2p, 2p.
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