000011557 001__ 11557
000011557 005__ 20200423202825.0
000011557 0247_ $$2pmid$$apmid:20699400
000011557 0247_ $$2pmc$$apmc:PMC2949041
000011557 0247_ $$2DOI$$a10.1104/pp.110.162792
000011557 0247_ $$2WOS$$aWOS:000282512300067
000011557 037__ $$aPreJuSER-11557
000011557 041__ $$aeng
000011557 082__ $$a580
000011557 084__ $$2WoS$$aPlant Sciences
000011557 1001_ $$0P:(DE-HGF)0$$aChen, X.$$b0
000011557 245__ $$aEndogenous Abscisic Acid as a Key Switch for Natural Variation in Flooding-Induced Shoot Elongation
000011557 260__ $$aRockville, Md.: Soc.$$bJSTOR$$c2010
000011557 300__ $$a969 - 977
000011557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011557 3367_ $$2DataCite$$aOutput Types/Journal article
000011557 3367_ $$00$$2EndNote$$aJournal Article
000011557 3367_ $$2BibTeX$$aARTICLE
000011557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011557 3367_ $$2DRIVER$$aarticle
000011557 440_0 $$04987$$aPlant Physiology$$v154$$x0032-0889
000011557 500__ $$aThis work was supported by the Netherlands Organization for Scientific Research (NWO-ALW; VENI grant no. 86306001 to R.P.).
000011557 520__ $$aElongation of leaves and stem is a key trait for survival of terrestrial plants during shallow but prolonged floods that completely submerge the shoot. However, natural floods at different locations vary strongly in duration and depth, and, therefore, populations from these locations are subjected to different selection pressure, leading to intraspecific variation. Here, we identified the signal transduction component that causes response variation in shoot elongation among two accessions of the wetland plant Rumex palustris. These accessions differed 2-fold in petiole elongation rates upon submergence, with fast elongation found in a population from a river floodplain and slow elongation in plants from a lake bank. Fast petiole elongation under water consumes carbohydrates and depends on the (inter)action of the plant hormones ethylene, abscisic acid, and gibberellic acid. We found that carbohydrate levels and dynamics in shoots did not differ between the fast and slow elongating plants, but that the level of ethylene-regulated abscisic acid in petioles, and hence gibberellic acid responsiveness of these petioles explained the difference in shoot elongation upon submergence. Since this is the exact signal transduction level that also explains the variation in flooding-induced shoot elongation among plant species (namely, R. palustris and Rumex acetosa), we suggest that natural selection results in similar modification of regulatory pathways within and between species.
000011557 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000011557 588__ $$aDataset connected to Web of Science, Pubmed
000011557 650_2 $$2MeSH$$aAbscisic Acid: physiology
000011557 650_2 $$2MeSH$$aCarbohydrates: analysis
000011557 650_2 $$2MeSH$$aEthylenes: metabolism
000011557 650_2 $$2MeSH$$aFloods
000011557 650_2 $$2MeSH$$aGibberellins: physiology
000011557 650_2 $$2MeSH$$aMolecular Sequence Data
000011557 650_2 $$2MeSH$$aPlant Growth Regulators: physiology
000011557 650_2 $$2MeSH$$aPlant Shoots: growth & development
000011557 650_2 $$2MeSH$$aRNA, Plant: genetics
000011557 650_2 $$2MeSH$$aRumex: genetics
000011557 650_2 $$2MeSH$$aRumex: growth & development
000011557 650_2 $$2MeSH$$aRumex: physiology
000011557 650_2 $$2MeSH$$aSignal Transduction
000011557 650_2 $$2MeSH$$aWater: physiology
000011557 650_7 $$00$$2NLM Chemicals$$aCarbohydrates
000011557 650_7 $$00$$2NLM Chemicals$$aEthylenes
000011557 650_7 $$00$$2NLM Chemicals$$aGibberellins
000011557 650_7 $$00$$2NLM Chemicals$$aPlant Growth Regulators
000011557 650_7 $$00$$2NLM Chemicals$$aRNA, Plant
000011557 650_7 $$021293-29-8$$2NLM Chemicals$$aAbscisic Acid
000011557 650_7 $$074-85-1$$2NLM Chemicals$$aethylene
000011557 650_7 $$077-06-5$$2NLM Chemicals$$agibberellic acid
000011557 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000011557 650_7 $$2WoSType$$aJ
000011557 7001_ $$0P:(DE-HGF)0$$aPierik, R.$$b1
000011557 7001_ $$0P:(DE-HGF)0$$aPeeters, A.J.M.$$b2
000011557 7001_ $$0P:(DE-Juel1)129384$$aPoorter, H.$$b3$$uFZJ
000011557 7001_ $$0P:(DE-HGF)0$$aVisser, E.J.W.$$b4
000011557 7001_ $$0P:(DE-HGF)0$$aHuber, H.$$b5
000011557 7001_ $$0P:(DE-HGF)0$$ade Kroon, H.$$b6
000011557 7001_ $$0P:(DE-HGF)0$$aVoesenek, L.A.C.J.$$b7
000011557 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.110.162792$$gVol. 154, p. 969 - 977$$p969 - 977$$q154<969 - 977$$tPlant physiology$$v154$$x0032-0889$$y2010
000011557 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949041
000011557 8564_ $$uhttps://juser.fz-juelich.de/record/11557/files/FZJ-11557.pdf$$yRestricted$$zPublished final document.
000011557 909CO $$ooai:juser.fz-juelich.de:11557$$pVDB
000011557 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011557 9141_ $$y2010
000011557 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000011557 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000011557 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000011557 970__ $$aVDB:(DE-Juel1)122766
000011557 980__ $$aVDB
000011557 980__ $$aConvertedRecord
000011557 980__ $$ajournal
000011557 980__ $$aI:(DE-Juel1)IBG-2-20101118
000011557 980__ $$aUNRESTRICTED
000011557 981__ $$aI:(DE-Juel1)IBG-2-20101118
000011557 981__ $$aI:(DE-Juel1)ICG-3-20090406