001     11775
005     20180208194520.0
024 7 _ |2 DOI
|a 10.1016/j.ijms.2010.02.012
024 7 _ |2 WOS
|a WOS:000277854900005
037 _ _ |a PreJuSER-11775
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
084 _ _ |2 WoS
|a Spectroscopy
100 1 _ |a Wallace, W.E.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB78760
245 _ _ |a Reactive MALDI mass spectrometry of saturated hydrocarbons: A theoretical study
260 _ _ |a [S.l.]
|b Elsevier Science
|c 2010
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a International Journal of Mass Spectrometry
|x 1387-3806
|0 2787
|y 1
|v 292
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Recently it has been shown that the cobaltocenium cation, prepared by the laser ablation of a CoCp(CO)(2)/fullerene matrix, may react with alkanes and polyethylenes in the gas phase via a dehydrogenation reaction to produce [Co(Cp)(2)(alkadiene)](+) ions without chain scission (W.E. Wallace, Chem. Commun. 2007, 4525-4527). To better understand these experimental observations, density functional calculations were used to obtain the gas phase binding energies and molecular structures of cobaltocenium, Co(Cp)(2)(+), with 1,3-butadiene, 2,4-hexadiene, and 2,3-hexadiene. Calculations were conducted for both cis and trans molecular configurations, in both singlet and triplet electronic states, and with a variety of cyclopentadienyl hapticities. For 1,3-butadiene the 18-electron rule would predict a [Co(eta(5)-Cp)(2)(1,3-butadiene)](+), however, the lowest energy structure, [Co(eta(5)-Cp)(2)(1,3-butadiene)](+), has a higher than expected cyclopentadienyl hapticity. In this structure a distance of nearly 0.5 nm between the metal core and the butadiene ligand leads to very little electron sharing. Thus the detected ions are better described as non-covalent ion-molecule complexes. In turn, the lack of orbital overlap leads to a low enthalpy giving the cis-butadiene complex a -13.0 kJ/mol binding energy and the trans-butadiene binding a -3.8 kJ/mol binding energy. These low binding energies lead to low levels of charged alkanes in the reactive ion formation process in agreement with experimental observations. Published by Elsevier B.V.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Alkane
653 2 0 |2 Author
|a Cobaltocene
653 2 0 |2 Author
|a Dehydrogenation
653 2 0 |2 Author
|a Density functional theory
653 2 0 |2 Author
|a Non-covalent
653 2 0 |2 Author
|a Polymer
700 1 _ |a Lewandowski, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)129496
700 1 _ |a Meier, R.J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB78003
773 _ _ |a 10.1016/j.ijms.2010.02.012
|g Vol. 292
|q 292
|0 PERI:(DE-600)1484635-4
|t International journal of mass spectrometry
|v 292
|y 2010
|x 1387-3806
856 7 _ |u http://dx.doi.org/10.1016/j.ijms.2010.02.012
909 C O |o oai:juser.fz-juelich.de:11775
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-4
|l Agrosphäre
|d 31.10.2010
|g ICG
|0 I:(DE-Juel1)VDB793
|x 1
970 _ _ |a VDB:(DE-Juel1)123102
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21