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3Earth and Life Institute, Université catholique de Louvain, Croix du Sud 2 Box 2, B-1348 Louvain-la-Neuve, Belgium

Accepted 2010 June 16. Received 2010 June 14; in original form 2010 January 7

S U M M A R Y
A joint analysis of full-waveform information content in ground penetrating radar (GPR)
and electromagnetic induction (EMI) synthetic data was investigated to reconstruct the elec-
trical properties of multilayered media. The GPR and EMI systems operate in zero-offset,
off-ground mode and are designed using vector network analyser technology. The inverse
problem is formulated in the least-squares sense. We compared four approaches for GPR and
EMI data fusion. The two first techniques consisted of defining a single objective function,
applying different weighting methods. As a first approach, we weighted the EMI and GPR
data using the inverse of the data variance. The ideal point method was also employed as a
second weighting scenario. The third approach is the naive Bayesian method and the fourth
technique corresponds to GPR–EMI and EMI–GPR sequential inversions. Synthetic GPR and
EMI data were generated for the particular case of a two-layered medium. Analysis of the
objective function response surfaces from the two first approaches demonstrated the benefit
of combining the two sources of information. However, due to the variations of the GPR and
EMI model sensitivities with respect to the medium electrical properties, the formulation of
an optimal objective function based on the weighting methods is not straightforward. While
the Bayesian method relies on assumptions with respect to the statistical distribution of the
parameters, it may constitute a relevant alternative for GPR and EMI data fusion. Sequential
inversions of different configurations for a two layered medium show that in the case of high
conductivity or permittivity for the first layer, the inversion scheme can not fully retrieve
the soil hydrogeophysical parameters. But in the case of low permittivity and conductivity
for the first layer, GPR–EMI inversion provides proper estimation of values compared to the
EMI–GPR inversion.

Key words: Inverse theory; Ground penetrating radar; Magnetic and electrical properties;
Hydrogeophysics.

1 I N T RO D U C T I O N

The shallow subsurface of the Earth is an extremely important geo-
logical zone, as it produces much of our water resources, supports
our agriculture and ecosystems, affects our climate and sustains
food production for humanity. The soil mediates many of the pro-
cesses that govern water resources and quality, such as the partition
of precipitation into infiltration and runoff, groundwater recharge,
contaminant transport, plant growth, evaporation and energy ex-
changes between the Earth’s surface and its atmosphere. As safe
and effective use of subsurface environment is a challenge, there is
a great need to improve our understanding of the soil and ground-
water. In this respect, development of non-invasive characterization

and monitoring techniques of the soil has become important. In
particular, hydrogeophysical techniques are required to assess dy-
namic subsurface phenomena and to develop optimal sustainability,
exploitation and remediation strategies.

Amongst existing geophysical techniques, ground penetrating
radar (GPR) and electromagnetic induction (EMI) are of partic-
ular interest for providing high-resolution subsurface images and
monitoring soil electrical properties. GPR is based on the transmis-
sion and reception of VHF–UHF (30–3000 MHz) electromagnetic
waves into the ground. As the dielectric permittivity of water over-
whelms the permittivity of other soil components, the presence of
water in the soil principally governs GPR wave propagation. As
a result, GPR-derived dielectric permittivity is usually used as a
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1268 D. Moghadas et al.

surrogate measure for soil water content. In the areas of unsatu-
rated zone hydrology and water resources, GPR has been used to
identify soil stratigraphy (Grandjean et al. 2006), to locate water
tables (Nakashima et al. 2001), to identify soil hydraulic parameters
(Binley et al. 2002; Kowalsky et al. 2005), to measure soil water
content (Huisman et al. 2003), to assess soil salinity (al Hagrey &
Muller 2000), and to delineate soil compaction within agricultural
fields (Petersen et al. 2005). EMI is widely used for proximal soil
electrical conductivity determination based on the radiation of a
VLF EM wave into the soil. Depending on soil electrical conduc-
tivity, eddy currents are generated and produce a secondary EM
field which is then recorded by the EMI system. This method oper-
ates at frequencies ranging from 1–100 kHz. EMI applications are
quite diversified, it is notably used for salinity mapping and moni-
toring in agricultural fields (Cameron et al. 1981; Hendrickx et al.
1992; Lesch et al. 1998; Amezketa 2006), soil water content esti-
mation (Kachanoski et al. 1988; Reedy & Scanlon 2003; Sherlock
& McDonnell 2003), soil texture mapping (Hedley et al. 2004;
Triantafilis & Lesch 2005), soil acidity assessment (Dunn &
Beecher 2007), detection of buried metallic bodies like unexploded
ordnance (UXO) (Pasion et al. 2007; Huang & Won 2003), detec-
tion of contaminants in soils and shallow aquifers (Ladwig 1983;
Hoekstra et al. 1992), clay content estimation (McBratney et al.
2005; Triantafilis & Lesch 2005) and characterization of the vadose
zone (Everett et al. 2006).

It is possible to increase the information extracted from geophysi-
cal data by combining different geophysical sensors in an integrated
inverse modelling scheme that may properly regularize the overall
inverse estimation problem. For instance, Ghose & Slob (2006)
combined GPR and seismic data to obtain unique estimates for wa-
ter saturation and porosity in the soil. Lines et al. (1988) proposed
two main approaches for cooperative inversion of geophysical data.
The first one is joint inversion, in which multiple objective functions
are combined into one overall objective function and the optimal
solution is controlled by a weight vector. The choice of the respec-
tive weights of the two data sets is critical and constitutes the main
difficulty of this method. Several weighting methods have been ap-
plied by different authors. The inverse of data variance as weighting
vector is commonly used for multi-objective optimization. One of
the first methods proposed for multi-objective optimization is Goal
programming. In this approach, we define a goal or aspiration level
(each measurement is given a goal or target value to be achieved)
for each component of the objective function. Then, the distances
between the goal vector and the objective function vector are mini-
mized (Charnes & Cooper 1960). Zeleny (1982) also modified the
goal programming technique using ideal point vector instead of goal
vector, called ideal point method. In this approach, the ideal point
vector is the minimum of the objective function vector. Another
approach applied in joint inversion is Bayesian data fusion (Aster
et al. 2005). This method sets the problem in a proper probabilis-
tic framework and also provides a straightforward way to update
existing probability density functions with new relevant informa-
tion (Ezzedine et al. 1999; Chen et al. 2001; Chen & Rubin 2003;
Bogaert & Fasbender 2007). Genetic algorithms have been recently
used for geophysical data fusion (Srinivas & Deb 1994; Deb et al.
2002; Moorkamp et al. 2007), which use a population of points
that are able to find multiple Pareto-optimal solutions simulta-
neously. A review of different methods applied for geophysical
joint inversion is presented by Kozlovskaya et al. (2007). The sec-
ond approach proposed by Lines et al. (1988) for cooperative in-
version of geophysical data is sequential inversion in which the
different data sets are inverted successively. The interest of this

method is that it avoids from the weighting problem of the joint
inversion.

Based on work by Lambot et al. (2004) and Moghadas et al.
(2010), we investigated the effectiveness of different approaches
for integrated inversion of off-ground GPR and EMI data. We first
combined the GPR and EMI sources of information into a single
objective function using two different techniques, namely, weight-
ing by the inverse of the data variance and using ideal point method
(Zeleny 1982; Kozlovskaya et al. 2007). The Bayesian method cor-
responds to the third studied technique, considering normality for
the distribution of the parameter estimates. Finally, we performed
sequential inversion using the information obtained from the inver-
sion of the EMI data as a priori information to invert the GPR data,
and vice versa.

2 M AT E R I A L S A N D M E T H O D S

2.1 GPR and EMI forward models

For both GPR and EMI, antenna-subsurface modelling is based on
the approach proposed by Lambot et al. (2004). In this method,
a monostatic off-ground antenna is connected to a vector network
analyser (VNA) playing the role of transmitter and receiver. A TEM
horn antenna is used for the GPR measurements, while a loop an-
tenna is used for EMI data acquisition. The advantage of VNA
compared to traditional GPR and EMI systems is that the measured
quantity, i.e. the ratio between received and transmitted signal, is
physically well described and established as an international stan-
dard with robust calibration (Ferrero et al. 1994; Martens et al.
2005; Hiebel 2007).

Assuming the soil surface to be located in the far field region
of the GPR antenna and the EMI loop antenna to be small com-
pared to the wavelength in the air and skin-depth in the ground,
the zero-offset antenna reduces to a point source and receiver. The
point source and receiver is assumed to be located above a 3-D,
horizontally multilayered medium. As the variations in the model
configuration are only in one direction, the earth model is 1-D but
the sources and receivers are 3-D. As a result, the wavefield propa-
gation and modelling are 3-D using a 1-D earth model. The medium
consists of N layers separated by N − 1 planar interfaces parallel
to the x–y plane of a right-handed Cartesian coordinate system.
The medium of the nth layer is homogeneous and characterized
by magnetic permeability μn, dielectric permittivity εn, electrical
conductivity σ n and thickness hn.

Assuming the distribution of the electromagnetic field measured
by the antenna to be independent of the distribution of the soil
properties and antenna height, that is, only the phase and amplitude
of the field change, any antenna can be modelled using the following
equation (Lambot et al. 2004)

S11(ω) = b(ω)

a(ω)
= Hi (ω) + H (ω)G↑

∗∗(ω)

1 − H f (ω)G↑
∗∗(ω)

, (1)

where S11(ω) is the frequency-dependent quantity measured by the
VNA, b(ω) and a(ω) are, respectively, the received and emitted
waves, ω is the angular frequency, Hi(ω), H (ω) and Hf (ω) are the
characteristic antenna transfer functions accounting for all multiples
in the antenna and between the antenna and the soil, and G↑

∗∗ is
the Green’s function of the air–subsurface system modelled as a
3-D multilayered medium. The Green’s function for GPR (G↑

xx) is
defined as the backscattered x-directed electric field at the antenna
phase centre for a unit x-directed electric source situated also at the
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GPR and EMI data fusion 1269

antenna phase centre. The Green’s function for EMI (G↑
zz) is defined

as the backscattered z-directed magnetic field at the antenna phase
centre for a unit z-directed magnetic source situated also at the
antenna phase centre.

The spatial-domain Green’s function for GPR is found to be
(Lambot et al. 2004)

G↑
xx =

∫ +∞

0
G̃↑

xx (kρ)kρdkρ, (2)

where the spectral Green’s function is defined as

G̃↑
xx (kρ) = 1

8π

(
�1 RTM

1

η1
− ζ1 RTE

1

�1

)
exp(−2�1h1). (3)

In this expression, the subscripts denote layer indexes, RTE and RTM

are respectively, the transverse electric (TE) and transverse magnetic
(TM) global reflection coefficients accounting for all reflections and
multiples from inferior interfaces, � is vertical wavenumber defined

as � =
√

k2
ρ − k2, whilst k2 = ω2μ(ε − jσ

ω
), ζ1 = jωμ1 and η1 =

σ 1 + jωε1. For the free-space layer 1, we have k2
1 = ( ω

c )2 in which
c is the speed of light in free space. Similarly, the spatial-domain
Green’s function for EMI is defined as (Moghadas et al. 2010)

G↑
zz =

∫ +∞

0
G̃↑

zz(kρ)kρdkρ, (4)

for which the spectral Green’s function is found to be

G̃↑
zz(kρ) =

(
k2

ρ RTE
1

4πζ1�1

)
exp(−2�1h1). (5)

The transformation back to the spatial domain Green’s function
is performed by a fast integral evaluation technique. The proposed
integration paths for GPR and EMI are discussed in detail in Lambot
et al. (2007) and Moghadas et al. (2010), respectively.

2.2 Model inversion

The soil layer constitutive parameters and thicknesses are obtained
from EMI and GPR data inversion, resulting in a non-linear opti-
mization problem. Parameter vector b = [εn, σ n, hn] (n = 1, . . . ,
N ) is determined minimizing an objective function φ(b). In the
particular case where no prior information on the parameters is
taken into account and assuming observation errors to be normally
distributed, the maximum likelihood theory reduces to the classical
least squares problem (Carrera & Neuman 1986). For GPR and EMI
taken separately, the objective function is defined as follows:

φ(b) = (
G↑meas

∗∗ − G↑mod
∗∗

)†
C−1

(
G↑meas

∗∗ − G↑mod
∗∗

)
, (6)

where G↑meas
∗∗ = G↑meas

∗∗ (ω) and G↑mod
∗∗ = G↑mod

∗∗ (ω, b) are the mea-
sured and modelled GPR or EMI Green’s functions, respectively,
C is the measurement error covariance matrix and b is the param-
eter vector to be optimized, which includes the layer electromag-
netic properties and thicknesses. In most electromagnetic problems,
this function is non-linear which necessitates using robust global
optimization algorithms. The minimization of eq. (6) is carried
out using the global multilevel coordinate search (GMCS) algo-
rithm (Huyer & Neumaier 1999) combined sequentially with the
classical Nelder–Mead simplex (NMS) algorithm (Lagarias et al.
1998).

The GMCS is a global method robust in finding minimum of
the multidimensional non-linear objective functions with complex
topography without requiring excessive computing resources. In
contrast to many stochastic methods that operate only at the global

level and are therefore quite slow, this approach has quick conver-
gence particularly, when the objective function is continuous in the
neighbourhood of the global minimum. Furthermore, GMCS does
not need to calculate derivatives of the objective function, causing it
to be very insensitive to possible discontinuity of the objective func-
tion. The NMS algorithm is a non-linear fast local search method
that does not need to calculate an explicit formulation of the ob-
jective function Jacobian. In other words, this method attempts to
minimize a scalar-valued non-linear function of n real variables us-
ing only function values, without any derivative information. An
extensive review about both optimization techniques and in partic-
ular, their applications for soil hydraulic properties estimations can
be found in Lambot et al. (2002).

2.3 Data fusion

The estimation of the soil dielectric permittivity and electrical con-
ductivity are important, but until now it has been difficult to estimate
them reliably from non-invasive geophysical sensors. Operating in
the high frequencies, GPR essentially provides information about
the dielectric permittivity. EMI uses a low frequency band and is
mainly sensitive to the electrical conductivity. We integrated GPR
and EMI data in order to fully take advantage of the complementary
information provided by both methods in reconstructing multilay-
ered media. This is useful when the conductivity is frequency inde-
pendent or when other independent data sources give information
about frequency dependence. When conductivity has frequency de-
pendence, EMI and GPR data fusion is possible if the frequency
dependence is known from EMI up to GPR frequencies. Due to the
different operating frequency ranges of EMI and GPR and also dif-
ferent sampling volumes and sensitivities, the way such data fusion
should be performed is not straightforward.

Indeed, the apparent electrical conductivity (including dielectric
losses) of soils in the EMI–GPR frequency range is frequency de-
pendent. As a result, in practice, a single electrical conductivity
parameter will not be sufficient to describe the soil and an appropri-
ate frequency dependence model has to be used, thereby involving
additional parameters to optimize. This inherently complicates the
inverse problem, but knowing frequency dependence also provides
additional valuable information regarding the soil, and in particular
regarding its texture (especially clay). Conceiving both joint and se-
quential inversion approaches, several multi-objective optimization
techniques were considered.

2.3.1 Weighting methods

Our first approach consisted of defining a single objective function,
corresponding to a weighted combination of the individual GPR
and EMI objective functions (see eq. 6). The choice of the weights
is of prime importance as it regulates the topography of the final
objective function, thereby influencing the uniqueness and stability
of the inverse solution and the accuracy of the parameter estimates.
We applied a commonly used method using the inverse of the data
variance as normalization (Simunek et al. 1998)

φ1 = φxx

var
∣∣G↑meas

xx

∣∣ + φzz

var
∣∣G↑meas

zz

∣∣ , (7)

where subscripts xx and zz denote GPR and EMI, respectively.
As a second weighting technique, we employed the ideal point

method. One of the first methods proposed for multi-objective
optimization is Goal programming. In this approach, a goal or
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1270 D. Moghadas et al.

aspiration level is defined for each component of the objective func-
tion. Then, the distances between the goal vector and the objective
function vector are minimized (Charnes & Cooper 1960). A modifi-
cation of the goal programming method is known as the ideal point
method. The optimal value of the objective function is regarded as
the ideal point in a multiple objective decision-making ideal point
method. Appointing the weights using normalization to a distance
between maximum and minimum values of each objective function,
ideal point is formulated as follows (Zeleny 1982; Kozlovskaya et al.
2007):

φ2 = φxx − min(φxx )

max(φxx ) − min(φxx )
+ φzz − min(φzz)

max(φzz) − min(φzz)
. (8)

Any solution to this problem is Pareto optimal. The Pareto opti-
mality provides us a set of solutions called the Pareto-optimal set,
characterized by the fact that starting from a solution within the
set, one objective function can only be improved when at least
one other objective function being deteriorated (Vrugt & Robinson
2007; Vrugt et al. 2007). This function cannot be easily used be-
cause normally we do not know the minimum and maximum values
of the objective function from real data, unless the objective func-
tion is fully computed. Yet, the minimum value should tend to zero
and, if the parameter space is sufficiently large, the maximum value
is expected to occur at the corners of the domain and can therefore
be readily calculated. It is worth noting that this fact is only valid
when we are dealing with the simple case of a one-layered medium
for which the relationship between soil electrical properties and the
fields has a monotonic behaviour. When considering more layers,
the objective function is highly non-linear and it is not ensured
that the maximum is encountered at the corners of the parameter
domain. In that case, the mean values between the corners can be
considered.

2.3.2 Bayesian method

We also applied naive Bayesian data fusion to combine GPR and
EMI information. In this approach, the measured quantity is a ran-
dom variable, and the solution is a probability distribution for the
model parameters. The Bayesian framework allows to naturally in-
corporate prior information about the solution that comes from
other data or experiment, expressed as prior distribution. The data
are combined with the prior distribution using Bayes’ theorem to
produce a posterior distribution for the model parameters. We as-
sumed Gaussian conditional probability density functions for the
parameters. In this case, the mean and the variance of the jointed
GPR and EMI solution can be evinced as follows, respectively
(Bogaert & Fasbender 2007)

m =
2∑

j=1

1/s2
j∑2

k=1

(
1/s2

k

)m j , (9)

s2 = 1∑2
j=1

1
s2

j

, (10)

where mj ( j = 1, 2) are the individual parameter estimates for GPR
and EMI and s2

j ( j = 1, 2) are their corresponding variances. The
variances s2

j are estimated from the Jacobian matrix around the
minimum of the GPR and EMI objective functions (Kool & Parker
1988).

2.3.3 Sequential inversion

While the joint inversion approach weights the set of data and places
them into one data vector, sequential inversion considers the sets of
data separately. Averting from the weighting problem of the joint
inversion scheme, sequential inversion was implemented as a final
approach. First, we used the data obtained by EMI inversion as
the input of GPR inversion algorithm (called EMI–GPR inversion).
We also repeated the sequential inversion fixing the thickness and
conductivity of the first and second layer for GPR inversion, respec-
tively. We performed the same procedure considering the a posteri-
ori information resulting from the inversion of the GPR data set as
a priori information to invert the EMI data set (called GPR–EMI
inversion). In this case, we repeated the method fixing the thickness
and electrical permittivity of the fist layer for the EMI inversion. In
all cases, we considered the height of the antenna above the surface
as a fixed value.

3 N U M E R I C A L E X P E R I M E N T S
A N D R E S U LT S

3.1 Model configuration and synthetic data

Four synthetic GPR and EMI data sets were generated for a two
layered medium as depicted in Fig. 1. The first data set is character-
ized by low electrical permittivity and conductivity values for the
first layer (εr,1 = 9 and σ 1 = 10−2 S m−1) and high corresponding
values for the second layer (εr,2 = 15 and σ 2 = 10−1 S m−1). The
second data set presented the same values for electrical conductiv-
ities for both layers, while the electrical permittivities of the first
and the second layers were reversed. Inversely, for the third data
set, the electrical permittivity values of both layers were identical
to that of the first data set, but with reversed configuration for the
layer electrical conductivities. Finally, the fourth investigated data
set presented higher values of both parameters for the first than for
the second layer. For all data sets, the top layer thickness was set
to h1 = 0.15 m. The height of the antenna above the soil surface
was fixed to h0 = 0.2 m, and the magnetic permeability μ of the
air and soil layers were considered as constant and equal to the free
space permeability μ0 = 4π × 10−7 Hm−1. Hence, the parameter
vector b to be inverted for is defined as b = [εr,1, εr,2, log10(σ 1),
log10(σ 2), h1]. The frequencies for EMI ranged from 1 to 50 kHz
and for GPR the frequencies ranged from 800 to 2600 MHz, with
frequency steps of 1 kHz and 6 MHz, respectively.

In order to assess the sensitivity of the data fusion approaches to
the presence of noise and evaluate the applicability of these meth-
ods for a real case scenario, we introduced some noise in the data.

Figure 1. Model configuration: 3-D layered medium with the source S in
air above two soil layers, including the lower half-space.
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GPR and EMI data fusion 1271

Considering all data sets, we added a Gaussian (standard normal
distribution) random noise of 1 and 5 per cent to the average am-
plitude of G↑

zz and G↑
xx, respectively. Fig. 2 illustrates the amplitude

of the Green’s function for EMI and GPR data conceiving the four
different configurations with a Gaussian random noise added to
them.

3.2 Weighting methods

Projections of the objective functions on key parameter planes cross-
ing the actual parameter values are presented in Fig. 3 for the inves-
tigated formulations, considering GPR and EMI data (applying the
first data set) separately and jointly. The analysis of the objective
function topography is important as it provides valuable insights
into the uniqueness of the inverse solution, the sensitivity of the
model to the different parameters, and parameter correlations. In the
εr,1−εr,2 parameter plane, the objective function for EMI presents
a minimum quite different from the real value (Fig. 3a), resulting
from the low sensitivity of EMI with respect to the soil dielectric
permittivity. For GPR (Fig. 3b) the global minimum is much well
defined and unique. Weighting the integrated objective function by
the inverse of the variance of the data (φ1) and also the second ob-
jective function (φ2) result logically in objective functions almost
identical to the GPR one (Figs 3c and d).

In the εr,1 – σ 1 plane, we clearly observe the high sensitivity of
EMI to electrical conductivity, while it is not sensitive to dielectric
permittivity (Fig. 3e). In contrast, GPR presents a better sensitivity
to dielectric permittivity and less to electrical conductivity (Fig. 3f).
Combining GPR and EMI information appears quite relevant for
proper estimation of these parameters. The first combination of
EMI and GPR data (Fig. 3g) leads to a well defined minimum,
which is advantageous in terms of uncertainty for the estimation of
both parameters. For the second formulation (Fig. 3h), the global
minimum is much well defined, although the topography suffers
from flatness in the permittivity and conductivity directions.

In the εr,2–σ 1 plane, results for EMI are quite similar to that
observed for the preceding parameter plane (Fig. 3i), while a pos-
itive correlation between the two parameters is observed for GPR
(Fig. 3j). This correlation is to be attributed to the fact that no
traveltime information is available to constrain εr,2. This parameter
is therefore can only be obtained through the reflection coefficient.
Yet, the reflection strength increases with either higher values of εr,2

or lower values of σ 1. Here again, the objective function obtained
from weighting by the inverse of the data variance is well defined.
For the ideal point formulation, the minimum is better defined than
that of the EMI and GPR individual response functions, while some
flatness is still observed around it (Fig. 3l).

In the εr,1–h1 plane, the EMI minimum is quite well defined for
h1, while the response function presents a flat valley in the direc-
tion of the dielectric permittivity (Fig. 3m). For GPR, the objective
function is much flatter (Fig. 3n). Moreover, a negative correla-
tion is observed between both parameters, which is due to the fact
that, considering the propagation time information in the GPR data,
increasing the top layer thickness will lead to the same effect (in-
creased propagation time) as increasing the dielectric permittivity
(decreasing wave velocity). The correlation is however not entire, as
the amplitude information permits to regularize to some extent that
ambiguity. Weighting EMI and GPR information by the inverse of
the data variances results in a rather flat region around the minimum,
especially in the εr,1 direction (Fig. 3o), while the EMI information
clearly dominates in the ideal point response function (Fig. 3p).

Finally, in the σ 1–σ 2 parameter plane, a very high negative cor-
relation between the two parameters is observed for EMI (Fig. 3q).
This shows that EMI is almost equally sensitive to both layers for
that model configuration and the layers can therefore not easily be
separated from the EMI data alone. In contrast, GPR provides a
better defined minimum (Fig. 3r), which is further constrained by
integrating GPR and EMI data using φ2 (Fig. 3t). As well in this
case, weighting the data by the inverse of their variance did not lead
to proper data fusion (Fig. 3s).

3.3 Bayesian data fusion

Bayesian data fusion relies on the probability density of the data and
sets the problem in a proper probabilistic framework. This method
also provides a straightforward way to update existing probability
density functions with new relevant information. Fig. 4 shows the
results of the Bayesian data fusion of GPR and EMI data (em-
ploying the first data set) corresponding to each pair of parameters
examined above for the weighting methods (see Section 3.2), set-
ting the other parameters to their true value. We assumed normal
probability density functions for the parameter estimates. For the
εr,1–εr,2 pair (Fig. 4a), we observe a flat distribution of both param-
eters estimated from EMI data, explained by the flat topography of
the objective function in the corresponding plane (see Fig. 3a) and
the resulting large parameter variance estimates (s2

εr,1
= 8 × 107

and s2
εr,2

= 6 × 107). In contrast, for GPR, the better definition
of the minimum provides much more accurate parameter estimates
(εr,1 = 8.9 and εr,2 = 14.9). As a result of weighting by the in-
verse of the variances of parameter estimations in Bayesian data
fusion (see eq. 9), EMI estimates have negligible contributions in
the definition of the Bayesian parameter distributions, which are
therefore superimposed to those for GPR. Quite similar results, aris-
ing from a lack of sensitivity of EMI to permittivity, are observed
in all the other cases concerned with estimation of this parameter
(Figs 4b–d).

For the εr,1–σ 1 pair (Fig. 4b), the well defined minimum of
the EMI objective function in the direction of the electrical con-
ductivity (see Fig. 3e) leads to an accurate estimation of this
parameter (σ 1 = 10−2 S m−1), with an estimated variance lower
than that from GPR (for EMI: s2

σ1
= 6 × 10−4 and for GPR:

s2
σ1

= 8 × 10−2). Therefore, in this case, information from EMI
dominates in the definition of the Bayesian Gaussian distribution.
Comparable results are observed for the εr,2−σ 1 pair (Fig. 4c). The
low contribution of GPR originates from the large uncertainty in
the estimation of electrical conductivity associated with the flat-
ness of the response function in the direction of this parameter (see
Fig. 3j).

Concerning the εr,1–h1 pair (Fig. 4d), inversion of GPR data
leads to inaccurate estimates of the first layer thickness (h1 = 3 m).
In contrast, EMI dominates the Bayesian inversion with accurate
estimation of h1 (=0.15 m), due to the valley in EMI objective func-
tion in that direction (Fig. 3m). Therefore, both EMI and Bayesian
present a low variance around the real h1 value (for both EMI and
Bayesian: s2

h1
= 2.3 × 10−6). Regarding the σ 1–σ 2 pair (Fig. 4e),

the strong correlation observed between both parameters in the
EMI response function for this model configuration, and the result-
ing flatness of the minimum region (see Fig. 3q), does not allow
simultaneous accurate estimations of electrical conductivities of the
two layers using EMI alone. Therefore, GPR essentially contributes
to the Bayesian estimate of σ 1, for which the minimum is better
defined (see Fig. 3r).
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1272 D. Moghadas et al.

Figure 2. Gaussian random noise (red plots) added to the data (blue plots) for four deferent data sets. Left-handed plots show the amplitude of GPR Green’s
function and the right handed plots correspond to the amplitude of EMI Green’s function. For all configurations, we added a Gaussian (standard normal
distribution) random noise of 1 and 5 per cent to the average amplitude of G↑

zz and G↑
xx, respectively.
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GPR and EMI data fusion 1273

Figure 3. Response surfaces of the objective function for different formulations, considering GPR and EMI data separately and jointly, and different parameter
planes of the full 5-D objective function. The white star represents the true values of the parameters.

3.4 Sequential inversion

As a fourth joint optimization technique, we implemented sequen-
tial inversion. We compared the EMI–GPR sequential inversion
procedure, in which EMI parameter estimates were used as initial
guess values for GPR data optimization, with GPR–EMI sequen-

tial inversion scheme for which GPR and EMI data are inverted
consecutively. Furthermore, two strategies were considered in each
case, either inverting both EMI and GPR data for all investigated
parameters (complete sequential inversion strategy) or performing
the second sequential inversion step fixing some parameter val-
ues to their estimate from the first step (partial sequential inversion
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1274 D. Moghadas et al.

Figure 4. Gaussian distribution of value parameters, considering GPR and EMI data separately and jointly. The black dashed line shows the real value.

strategy). More specifically for this latter strategy, partial EMI–GPR
inversion was carried out optimizing GPR data for εr,1, εr,2 and σ 1

only, fixing values of h1 and σ 2 to EMI estimates. In contrast,
partial GPR–EMI inversion was performed considering GPR es-
timates for h1 and εr,1 as fixed values for EMI data inversion. In
order to investigate the efficiency of sequential inversion for dif-
ferent hydrogeophysical properties, each of these approaches was

applied on several synthetic data sets generated for two-layered me-
dia with contrasted electrical property configurations (see Table 1).
The height of the antenna above the soil surface was equal to h0 =
0.20 m and it was considered as a fixed parameter in all sequential
inversion strategies. The results are presented in Table 1.

For the first data set, parameter estimates obtained from com-
plete EMI–GPR inversion differ generally strongly from the
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GPR and EMI data fusion 1275

Table 1. Estimations of two-layered medium properties from several sequential inversion techniques for four contrasted electrical property configurations.

EMIGPR inversion GPR-EMI inversion

Complete Partial Complete Partial

EMI GPR EMI GPR GPR EMI GPR EMI

Data set 1
εr,1 9 3652.08 4625.75 3652.08 9.14 9.06 9.34 9.06 9.06
εr,2 15 −2699.52 −3170.30 −2699.52 7.81 14.53 15.00 14.53 −54.99
h1 0.15 0.12 0.10 0.12 0.12 0.15 0.15 0.15 0.15
log(σ1) −2 −3.83 −3.38 −3.83 −1.51 −2.22 −2.27 −2.22 −2.23
log(σ2) −1 −1.01 −0.67 −1.01 −1.01 −1.09 −0.98 −1.09 −0.99

Data set 2
εr,1 15 −332.13 14.98 −332.13 14.76 14.98 34.56 14.98 14.98
εr,2 9 −7.55 13.20 −7.55 17.12 13.87 −1.51 13.87 −516.15
h1 0.15 0.13 0.21 0.13 0.13 0.24 0.15 0.24 0.24
log(σ1) −2 −2.25 −1.48 −2.25 −1.65 −1.52 −2.07 −1.52 −1.48
log(σ2) −1 −1.02 −1.98 −1.02 −1.02 −1.05 −1.00 −1.05 −1.02

Data set 3
εr,1 9 12.12 8.87 12.12 8.83 8.85 8.58 8.85 8.85
εr,2 15 92.52 10.99 92.52 8.89 2.89 2.88 2.89 248.50
h1 0.15 0.06 0.13 0.06 0.06 0.32 0.30 0.32 0.32
log(σ1) −1 −0.79 −0.99 −0.79 −0.99 −0.98 −1.09 −0.98 −1.14
log(σ2) −2 −1.92 −2.91 −1.92 −1.92 −12.04 −12.43 −12.04 −1.96

Data set 4
εr,1 15 −40.22 15.04 −40.22 15.24 15.04 14.55 15.04 15.04
εr,2 9 16.05 −6.56 16.05 21.94 6.85 6.85 6.85 14.85
h1 0.15 0.14 0.82 0.14 0.14 0.34 0.32 0.34 0.34
log(σ1) −1 −1.00 −0.95 −1.00 −0.99 −0.95 −1.10 −0.95 −1.15
log(σ2) −2 −1.89 1.83 −1.89 −1.89 −12.16 −12.48 −12.16 −1.94

Notes: In the EMI–GPR inversion scheme, EMI parameter estimates are used as guess values for the GPR data optimization, and inversely for the GPR–EMI
scheme. The complete inversion strategy corresponds to inversion of both EMI and GPR data for all the parameters. For the partial EMI–GPR strategy, GPR
data are inverted fixing parameters h1 and σ 2 to their EMI estimates. For the partial GPR–EMI strategy, EMI data are optimized considering h1 and εr,1 as
fixed to their GPR estimates.

theoretical values (εr,1 = 4625.75, εr,2 = −3170.30, h1 = 0.10 m,
σ 1 = 10−3.38 S m−1 and σ 2 = 10−0.67 S m−1). These observations
result from non-uniqueness issue in the inverse problem, notably
due to the low information content of EMI data with respect to
the both layer permittivities (see Figs 3a, e, i and m) associated
with the relatively low sensitivity of GPR to εr,2 and its correla-
tion with σ 1 (see Figs 3b, f and j). Considering two EMI highly
sensitive parameters (i.e. h1 and σ 2) as fixed values for GPR op-
timization, partial EMI–GPR sequential inversion allows to better
constraint the inverse problem and generally leads to much more
reliable parameter estimations, particularly for the permittivity and
conductivity of the first and second layer, respectively (εr,1 = 9.14
and σ 2 = 10−1.01 S m−1). As a result of generally better defined min-
ima of the GPR objective function compared with EMI for this data
set (see Fig. 3), complete GPR–EMI sequential inversion provides
estimates almost corresponding to the theoretical values for all pa-
rameters (εr,1 = 9.34, εr,2 = 15, h1 = 0.15 m, σ 1 = 10−2.27 S m−1

and σ 2 = 10−0.98 S m−1). Partial GPR–EMI inversion also improves
the estimation of all parameters except electrical permittivity of the
second layer in which the sequential inversion scheme detriments
the prediction (εr,2 = −54.99). This configuration characterized by
low electrical conductivity and permittivity values for the first layer
which is favourable to high penetration depth of the electromagnetic
fields. Therefore, in this case, both GPR and EMI techniques allows
to retrieve rather accurate information for the two layers. This fact
postulates to study the effects of different data set configurations on
this approach.

Regarding the second data set, complete EMI–GPR sequential
inversion leads to parameter estimates quite different from the ex-
pected theoretical values, except for the permittivity of the first
layer (εr,1 = 14.98). Partial EMI–GPR sequential inversion allows
to properly estimate σ 2 (=10−1.02 S m−1) in addition to εr,1(=14.76),
while the estimations for the three other parameters remain quite
apart from the real values (εr,2 = 17.12, h1 = 0.13 m and σ 1 =
10−1.65 S m−1). This is because of the flat topography of the EMI
objective functions for these parameters, in particular for permit-
tivity of the second layer. Complete GPR–EMI sequential inversion
estimates h1 = 0.15 m, σ 1 = 10−2.07 S m−1 and σ 2 = 10−1 S m−1

corresponding to their real values but presents inaccurate estimates
for εr,1(=34.56) and εr,2(= −1.51). Partial GPR–EMI sequential
inversion fails to retrieve the conductivity and permittivity of the
first and second layer, respectively (σ 1 = 10−1.48 S m−1 and εr,2 =
−516.15) but provides accurate estimates for εr,1(=14.98) and σ 2 =
10−1.02 S m−1. The general failing of the methods for retrieving the
values for εr,2 arises from the high permittivity of the first layer and
consequently, low penetration of the GPR signal in the second layer.
In contrast, the low conductivity of the first layer (allowing higher
EMI penetration depth) contributes to rather good estimations for
the electrical conductivity of both layers.

For the third scenario, the value obtained for εr,2 from com-
plete EMI–GPR inversion shows deviation from the corresponding
real value (εr,2 = 10.99) resulting from the flat topography of the
EMI objective function around permittivity of the second layer.
Partial EMI–GPR inversion considerably improves the estimation
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1276 D. Moghadas et al.

Table 2. Calculation time for inversion of EMI and GPR data separately and sequentially for four
different configurations.

Calculation time (s)

EMI–GPR inversion GPR–EMI inversion

EMI GPR EMI–GPR GPR EMI GPR–EMI

Data set 1 Complete 1726 121 1847 260 52 312
Partial 1530 280 1810 414 423 837

Data set 2 Complete 1828 63 1891 445 263 708
Partial 1727 267 1993 462 758 1220

Data set 3 Complete 1330 32 1361 488 4 492
Partial 1916 82 1998 642 492 1134

Data set 4 Complete 2111 25 2136 464 5 470
Partial 2017 72 2089 531 692 1223

Note: The time for sequential inversions are presented for both partial and complete inversions.

of σ 2 (=10−1.92 S m−1), while it again fails to retrieve εr,2(=8.89).
Estimation of the permittivity of the second layer obtained from
complete GPR–EMI inversion differs from the theoretical value by
80 per cent but the obtained results for conductivity and permittiv-
ity of the first layer are quite close to the real values (εr,1 = 8.58
and σ 1 = 10−1.09 S m−1). Partial GPR–EMI inversion also fails to
retrieve the permittivity of the second layer (εr,2 = 248.50). As a
result of the high electrical conductivity of the first layer in this
configuration, electromagnetic wave has a low penetration depth
into the subsurface. This explains the failure of the investigated
sequential inversion methods in retrieving εr,2.

For the last data set, high values for the dielectric permittivity
and for the electrical conductivity of the first layer both induce low
penetration depth of the magnetic waves in the subsurface. This
again explains the generally large deviations of the εr,2 estimates
from the theoretical values for the different sequential inversion
schemes, as well as the low efficiency of GPR to retrieve h1 in
the all inversion strategies. In contrast, electrical conductivities of
both layers are well estimated in all cases, except for the complete
GPR–EMI inversion failing to retrieve σ 2 (=10−12.48 S m−1).

Table 2 presents the calculation time for EMI and GPR inversions
separately and sequentially. GPR inversions are faster than EMI in-
versions which is because of the integration path and oscillations
of EMI integrand in spatial domain Green’s function (Lambot et al.
2007; Moghadas et al. 2010). Due to the topography of the objective
functions in the complete sequential inversions, we only used local
optimization for the second inversion scheme. As a result, in most
scenarios, partial inversions consume more time than complete se-
quential techniques. According to the Table 2, GPR–EMI inversions
are also faster than EMI–GPR sequential inversions. This is because
the calculation times for the first inversion methods dominate the
times needed for sequential inversions.

4 C O N C LU S I O N S

Combining GPR and EMI data for reconstructing multilayered me-
dia is promising as the two techniques provide complementary in-
formation. Integrated full-waveform EMI and GPR inversion was
investigated using numerical experiments to retrieve soil hydro-
geophysical properties, comparing different data fusion techniques:
weighting methods, Bayesian data fusion and sequential inversion.
The joint inversion based on weighting by the inverse of variance
is not appropriate for accurate estimation of soil properties from
EMI and GPR data. The ideal point approach is more adequate
with a better definition of the minimum of the objective functions,

though the topography may suffer from flatness in the direction of
the parameters which is prejudicial to the accuracy of the parameter
estimates. The Bayesian method may represent a good alternative
for GPR and EMI data fusion, as it provides accurate estimation of
the values with low variance, but it relies on assumptions with regard
to the distribution of the parameters. Considering normal distribu-
tion as a priori information, the Bayesian approach presents more
accurate results for our numerical experiments. GPR–EMI inver-
sion approach can accurately estimate the soil electrical parameters
when the values of conductivity and permittivity of the first layer
are low. For the corresponding configuration, EMI–GPR inversion
provides inaccurate estimation of parameter values. The numeri-
cal experiments presented in this paper show that the sequential
method is highly dependent on the multilayered configuration. The
high value of conductivity or permittivity for the first layer reduces
the penetration depth of electromagnetic field. As a consequence,
sequential inversion scheme is not able to properly estimate electri-
cal properties of the second layer. Partial sequential inversion can
improve the results but in some cases it still shows some deviations
from the theoretical values.
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