000011790 001__ 11790
000011790 005__ 20240619091934.0
000011790 0247_ $$2pmid$$apmid:20701364
000011790 0247_ $$2DOI$$a10.1021/jp100962p
000011790 0247_ $$2WOS$$aWOS:000280727700005
000011790 0247_ $$2MLZ$$aGhugareCTDGWP2010
000011790 037__ $$aPreJuSER-11790
000011790 041__ $$aeng
000011790 082__ $$a530
000011790 084__ $$2WoS$$aChemistry, Physical
000011790 1001_ $$0P:(DE-HGF)0$$aGhugare, S.V.$$b0
000011790 245__ $$aStructure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature
000011790 260__ $$aWashington, DC$$bSoc.$$c2010
000011790 300__ $$a10285 - 10293
000011790 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011790 3367_ $$2DataCite$$aOutput Types/Journal article
000011790 3367_ $$00$$2EndNote$$aJournal Article
000011790 3367_ $$2BibTeX$$aARTICLE
000011790 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011790 3367_ $$2DRIVER$$aarticle
000011790 440_0 $$03694$$aJournal of Physical Chemistry B$$v114$$x1520-6106$$y32
000011790 500__ $$aThis work was partially funded by MIUR-PRIN project 20077LCNTW. S.G. gratefully acknowledges the international Ph.D. student program of the University of Rome Tor Vergata. The SPHERES experiment has been supported by the European Commission under the Seventh Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract no.: 226507 (NMI3). The IRIS experiment was performed within Agreement No. 01/901 between CCLRC and CNR.
000011790 520__ $$aSustained drug delivery requires the use of multifunctional devices with enhanced properties. These properties include responsiveness to external stimuli (such as temperature, pH, ionic strength), ability to deliver suitably designed ligands to specific receptors, enhanced bioadhesion to cells, and cytocompatibility. Microgels represent one of such multifunctional drug delivery devices. Recently, we described the fabrication of a stable colloidal aqueous suspension of cytocompatible microgel spheres based on a poly(vinyl alcohol)/poly(methacrylate-co-N-isopropylacrylamide) network ( Ghugare, S. Mozetic, P. Paradossi, G. Biomacromolecules 2009 , 10 , 1589 ). These microgel spheres undergo an entropy-driven volume phase transition around the physiological temperature, this phase transition being driven by the incorporation of NiPAAm residues in the network. In that study, the microgel was loaded with the anticancer drug doxorubicin. As the microgel shrank, a marked increase in the amount of doxorubicin released was noted. Indeed, dynamic light scattering measurements showed the diameter reduction to be about 50%. In the present paper, we focus on some fundamental issues regarding modifications of the hydrogel architecture at a nanoscopic level as well as of the diffusive behavior of water associated with the polymer network around the volume phase transition temperature (VPTT). Sieving and size exclusion effects were studied by laser scanning confocal microscopy with the microgel exposed to fluorescent probes with different molecular weights. Confocal microscopy observations at room temperature and at 40 degrees C (i.e., below and above the VPTT) provided an evaluation of the variation of the average pore size (from 5 nm to less than 3 nm). Using quasielastic neutron scattering (QENS) with the IRIS spectrometer at ISIS, UK, the diffusive behavior of water molecules closely associated to the polymer network around the VPTT was investigated. A clear change in the values of diffusion coefficient of bound water was observed at the transition temperature. In addition, the local dynamics of the polymer itself was probed using the QENS spectrometer SPHERES at FRM II, Germany. For this study, the microgel was swollen in D(2)O. An average characteristic distance of about 5 A for the localized chain motions was evaluated from the elastic incoherent structure factor (EISF) and from the Q-dependence of the Lorentzian width.
000011790 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000011790 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000011790 588__ $$aDataset connected to Web of Science, Pubmed
000011790 650_2 $$2MeSH$$aAcrylamides: chemistry
000011790 650_2 $$2MeSH$$aAntibiotics, Antineoplastic: chemistry
000011790 650_2 $$2MeSH$$aDoxorubicin: chemistry
000011790 650_2 $$2MeSH$$aDrug Delivery Systems
000011790 650_2 $$2MeSH$$aHydrogels: chemistry
000011790 650_2 $$2MeSH$$aMaterials Testing
000011790 650_2 $$2MeSH$$aMolecular Structure
000011790 650_2 $$2MeSH$$aParticle Size
000011790 650_2 $$2MeSH$$aPhase Transition
000011790 650_2 $$2MeSH$$aPolymethacrylic Acids: chemistry
000011790 650_2 $$2MeSH$$aPolyvinyl Alcohol: chemistry
000011790 650_2 $$2MeSH$$aTransition Temperature
000011790 650_7 $$00$$2NLM Chemicals$$aAcrylamides
000011790 650_7 $$00$$2NLM Chemicals$$aAntibiotics, Antineoplastic
000011790 650_7 $$00$$2NLM Chemicals$$aHydrogels
000011790 650_7 $$00$$2NLM Chemicals$$aPolymethacrylic Acids
000011790 650_7 $$02210-25-5$$2NLM Chemicals$$aN-isopropylacrylamide
000011790 650_7 $$023214-92-8$$2NLM Chemicals$$aDoxorubicin
000011790 650_7 $$09002-89-5$$2NLM Chemicals$$aPolyvinyl Alcohol
000011790 650_7 $$2WoSType$$aJ
000011790 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000011790 7001_ $$0P:(DE-HGF)0$$aChiessi, E.$$b1
000011790 7001_ $$0P:(DE-HGF)0$$aTelling, M.T.F.$$b2
000011790 7001_ $$0P:(DE-HGF)0$$aDeriu, A.$$b3
000011790 7001_ $$0P:(DE-HGF)0$$aGerelli, Y.$$b4
000011790 7001_ $$0P:(DE-Juel1)131044$$aWuttke, J.$$b5$$uFZJ
000011790 7001_ $$0P:(DE-HGF)0$$aParadossi, G.$$b6
000011790 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp100962p$$gVol. 114, p. 10285 - 10293$$p10285 - 10293$$q114<10285 - 10293$$tThe @journal of physical chemistry <Washington, DC> / B$$v114$$x1520-6106$$y2010
000011790 8567_ $$uhttp://dx.doi.org/10.1021/jp100962p
000011790 909CO $$ooai:juser.fz-juelich.de:11790$$pVDB
000011790 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011790 9141_ $$y2010
000011790 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000011790 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000011790 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000011790 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x0
000011790 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x1
000011790 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000011790 970__ $$aVDB:(DE-Juel1)123132
000011790 980__ $$aVDB
000011790 980__ $$aConvertedRecord
000011790 980__ $$ajournal
000011790 980__ $$aI:(DE-Juel1)PGI-4-20110106
000011790 980__ $$aI:(DE-Juel1)ICS-1-20110106
000011790 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000011790 980__ $$aUNRESTRICTED
000011790 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000011790 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011790 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000011790 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011790 981__ $$aI:(DE-Juel1)IBI-8-20200312
000011790 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000011790 981__ $$aI:(DE-Juel1)PGI-4-20110106
000011790 981__ $$aI:(DE-Juel1)ICS-1-20110106
000011790 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000011790 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000011790 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128