001     11790
005     20240619091934.0
024 7 _ |2 pmid
|a pmid:20701364
024 7 _ |2 DOI
|a 10.1021/jp100962p
024 7 _ |2 WOS
|a WOS:000280727700005
024 7 _ |2 MLZ
|a GhugareCTDGWP2010
037 _ _ |a PreJuSER-11790
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
100 1 _ |0 P:(DE-HGF)0
|a Ghugare, S.V.
|b 0
245 _ _ |a Structure and Dynamics of a Thermoresponsive Microgel around Its Volume Phase Transition Temperature
260 _ _ |a Washington, DC
|b Soc.
|c 2010
300 _ _ |a 10285 - 10293
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3694
|a Journal of Physical Chemistry B
|v 114
|x 1520-6106
|y 32
500 _ _ |a This work was partially funded by MIUR-PRIN project 20077LCNTW. S.G. gratefully acknowledges the international Ph.D. student program of the University of Rome Tor Vergata. The SPHERES experiment has been supported by the European Commission under the Seventh Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract no.: 226507 (NMI3). The IRIS experiment was performed within Agreement No. 01/901 between CCLRC and CNR.
520 _ _ |a Sustained drug delivery requires the use of multifunctional devices with enhanced properties. These properties include responsiveness to external stimuli (such as temperature, pH, ionic strength), ability to deliver suitably designed ligands to specific receptors, enhanced bioadhesion to cells, and cytocompatibility. Microgels represent one of such multifunctional drug delivery devices. Recently, we described the fabrication of a stable colloidal aqueous suspension of cytocompatible microgel spheres based on a poly(vinyl alcohol)/poly(methacrylate-co-N-isopropylacrylamide) network ( Ghugare, S. Mozetic, P. Paradossi, G. Biomacromolecules 2009 , 10 , 1589 ). These microgel spheres undergo an entropy-driven volume phase transition around the physiological temperature, this phase transition being driven by the incorporation of NiPAAm residues in the network. In that study, the microgel was loaded with the anticancer drug doxorubicin. As the microgel shrank, a marked increase in the amount of doxorubicin released was noted. Indeed, dynamic light scattering measurements showed the diameter reduction to be about 50%. In the present paper, we focus on some fundamental issues regarding modifications of the hydrogel architecture at a nanoscopic level as well as of the diffusive behavior of water associated with the polymer network around the volume phase transition temperature (VPTT). Sieving and size exclusion effects were studied by laser scanning confocal microscopy with the microgel exposed to fluorescent probes with different molecular weights. Confocal microscopy observations at room temperature and at 40 degrees C (i.e., below and above the VPTT) provided an evaluation of the variation of the average pore size (from 5 nm to less than 3 nm). Using quasielastic neutron scattering (QENS) with the IRIS spectrometer at ISIS, UK, the diffusive behavior of water molecules closely associated to the polymer network around the VPTT was investigated. A clear change in the values of diffusion coefficient of bound water was observed at the transition temperature. In addition, the local dynamics of the polymer itself was probed using the QENS spectrometer SPHERES at FRM II, Germany. For this study, the microgel was swollen in D(2)O. An average characteristic distance of about 5 A for the localized chain motions was evaluated from the elastic incoherent structure factor (EISF) and from the Q-dependence of the Lorentzian width.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK415
|2 G:(DE-HGF)
|a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Acrylamides: chemistry
650 _ 2 |2 MeSH
|a Antibiotics, Antineoplastic: chemistry
650 _ 2 |2 MeSH
|a Doxorubicin: chemistry
650 _ 2 |2 MeSH
|a Drug Delivery Systems
650 _ 2 |2 MeSH
|a Hydrogels: chemistry
650 _ 2 |2 MeSH
|a Materials Testing
650 _ 2 |2 MeSH
|a Molecular Structure
650 _ 2 |2 MeSH
|a Particle Size
650 _ 2 |2 MeSH
|a Phase Transition
650 _ 2 |2 MeSH
|a Polymethacrylic Acids: chemistry
650 _ 2 |2 MeSH
|a Polyvinyl Alcohol: chemistry
650 _ 2 |2 MeSH
|a Transition Temperature
650 _ 7 |0 0
|2 NLM Chemicals
|a Acrylamides
650 _ 7 |0 0
|2 NLM Chemicals
|a Antibiotics, Antineoplastic
650 _ 7 |0 0
|2 NLM Chemicals
|a Hydrogels
650 _ 7 |0 0
|2 NLM Chemicals
|a Polymethacrylic Acids
650 _ 7 |0 2210-25-5
|2 NLM Chemicals
|a N-isopropylacrylamide
650 _ 7 |0 23214-92-8
|2 NLM Chemicals
|a Doxorubicin
650 _ 7 |0 9002-89-5
|2 NLM Chemicals
|a Polyvinyl Alcohol
650 _ 7 |2 WoSType
|a J
693 _ _ |0 EXP:(DE-MLZ)SPHERES-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)SPHERES-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPHERES: Backscattering spectrometer
|f NL6S
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Chiessi, E.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Telling, M.T.F.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Deriu, A.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Gerelli, Y.
|b 4
700 1 _ |0 P:(DE-Juel1)131044
|a Wuttke, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Paradossi, G.
|b 6
773 _ _ |0 PERI:(DE-600)2006039-7
|a 10.1021/jp100962p
|g Vol. 114, p. 10285 - 10293
|p 10285 - 10293
|q 114<10285 - 10293
|t The @journal of physical chemistry / B
|v 114
|x 1520-6106
|y 2010
856 7 _ |u http://dx.doi.org/10.1021/jp100962p
909 C O |o oai:juser.fz-juelich.de:11790
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK505
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK415
|a DE-HGF
|b Struktur der Materie
|k P55
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|x 1
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB784
|d 31.12.2010
|g IFF
|k IFF-4
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)VDB785
|d 31.12.2010
|g IFF
|k IFF-5
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-20121112
|k Jülich Centre for Neutron Science JCNS (JCNS) ; JCNS
|l JCNS
|x 2
970 _ _ |a VDB:(DE-Juel1)123132
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-SNS-20110128
981 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21