000011844 001__ 11844
000011844 005__ 20200423202832.0
000011844 017__ $$aThis version is available at the following URL: http://jcp.aip.org
000011844 0247_ $$2WOS$$aWOS:000085345300037
000011844 0247_ $$2Handle$$a2128/844
000011844 037__ $$aPreJuSER-11844
000011844 041__ $$aeng
000011844 082__ $$a540
000011844 084__ $$2WoS$$aPhysics, Atomic, Molecular & Chemical
000011844 1001_ $$0P:(DE-HGF)0$$aSchwarz, U. S.$$b0
000011844 245__ $$aStability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature
000011844 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2000
000011844 300__ $$a3792 - 3802
000011844 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011844 3367_ $$2DataCite$$aOutput Types/Journal article
000011844 3367_ $$00$$2EndNote$$aJournal Article
000011844 3367_ $$2BibTeX$$aARTICLE
000011844 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011844 3367_ $$2DRIVER$$aarticle
000011844 440_0 $$03145$$aJournal of Chemical Physics$$v112$$x0021-9606
000011844 500__ $$aRecord converted from VDB: 12.11.2012
000011844 520__ $$aWe study the phase behavior of ternary amphiphilic systems in the framework of a curvature model with nonvanishing spontaneous curvature. The amphiphilic monolayers can arrange in different ways to form micellar, hexagonal, lamellar, and various bicontinuous cubic phases. For the latter case we consider both single structures (one monolayer) and double structures (two monolayers). Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the families G, D, P, C(P), I-WP, and F-RD. The stability of the different bicontinuous cubic phases can be explained by the way in which their universal geometrical properties conspire with the concentration constraints. For vanishing saddle-splay modulus <(kappa)over bar>, almost every phase considered has some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed by sufficiently negative values of the saddle-splay modulus <(kappa)over bar>, we find that they can exist for considerably lower values than obtained previously. The most stable bicontinuous cubic phases with decreasing <(kappa)over bar>< 0 are the single and double gyroid structures since they combine favorable topological properties with extreme volume fractions. (C) 2000 American Institute of Physics. [S0021-9606(00)70306-0].
000011844 536__ $$0G:(DE-Juel1)FUEK53$$2G:(DE-HGF)$$aPolymere, Membranen und komplexe Flüssigkeiten$$c23.30.0$$x0
000011844 588__ $$aDataset connected to Web of Science
000011844 650_7 $$2WoSType$$aJ
000011844 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ
000011844 773__ $$0PERI:(DE-600)1473050-9$$gVol. 112, p. 3792 - 3802$$p3792 - 3802$$q112<3792 - 3802$$tThe @journal of chemical physics$$v112$$x0021-9606$$y2000
000011844 8564_ $$uhttps://juser.fz-juelich.de/record/11844/files/12320.pdf$$yOpenAccess
000011844 8564_ $$uhttps://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000011844 8564_ $$uhttps://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000011844 8564_ $$uhttps://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000011844 909CO $$ooai:juser.fz-juelich.de:11844$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000011844 9131_ $$0G:(DE-Juel1)FUEK53$$bStruktur der Materie und Materialforschung$$k23.30.0$$lFestkörperforschung$$vPolymere, Membranen und komplexe Flüssigkeiten$$x0
000011844 9141_ $$y2000
000011844 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011844 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000011844 9201_ $$0I:(DE-Juel1)VDB241$$d01.01.1900$$gIFF$$kIFF$$lInstitut für Festkörperforschung$$x0
000011844 970__ $$aVDB:(DE-Juel1)12320
000011844 980__ $$aVDB
000011844 980__ $$aJUWEL
000011844 980__ $$aConvertedRecord
000011844 980__ $$ajournal
000011844 980__ $$aI:(DE-Juel1)VDB241
000011844 980__ $$aUNRESTRICTED
000011844 980__ $$aFullTexts
000011844 9801_ $$aFullTexts