001     11844
005     20200423202832.0
017 _ _ |a This version is available at the following URL: http://jcp.aip.org
024 7 _ |a WOS:000085345300037
|2 WOS
024 7 _ |a 2128/844
|2 Handle
037 _ _ |a PreJuSER-11844
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Atomic, Molecular & Chemical
100 1 _ |a Schwarz, U. S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2000
300 _ _ |a 3792 - 3802
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Chemical Physics
|x 0021-9606
|0 3145
|v 112
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We study the phase behavior of ternary amphiphilic systems in the framework of a curvature model with nonvanishing spontaneous curvature. The amphiphilic monolayers can arrange in different ways to form micellar, hexagonal, lamellar, and various bicontinuous cubic phases. For the latter case we consider both single structures (one monolayer) and double structures (two monolayers). Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the families G, D, P, C(P), I-WP, and F-RD. The stability of the different bicontinuous cubic phases can be explained by the way in which their universal geometrical properties conspire with the concentration constraints. For vanishing saddle-splay modulus <(kappa)over bar>, almost every phase considered has some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed by sufficiently negative values of the saddle-splay modulus <(kappa)over bar>, we find that they can exist for considerably lower values than obtained previously. The most stable bicontinuous cubic phases with decreasing <(kappa)over bar>< 0 are the single and double gyroid structures since they combine favorable topological properties with extreme volume fractions. (C) 2000 American Institute of Physics. [S0021-9606(00)70306-0].
536 _ _ |a Polymere, Membranen und komplexe Flüssigkeiten
|c 23.30.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK53
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|0 P:(DE-Juel1)130665
|b 1
|u FZJ
773 _ _ |g Vol. 112, p. 3792 - 3802
|p 3792 - 3802
|q 112<3792 - 3802
|0 PERI:(DE-600)1473050-9
|t The @journal of chemical physics
|v 112
|y 2000
|x 0021-9606
856 4 _ |u https://juser.fz-juelich.de/record/11844/files/12320.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/11844/files/12320.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:11844
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k 23.30.0
|v Polymere, Membranen und komplexe Flüssigkeiten
|l Festkörperforschung
|b Struktur der Materie und Materialforschung
|0 G:(DE-Juel1)FUEK53
|x 0
914 1 _ |y 2000
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF
|l Institut für Festkörperforschung
|d 01.01.1900
|g IFF
|0 I:(DE-Juel1)VDB241
|x 0
970 _ _ |a VDB:(DE-Juel1)12320
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)VDB241
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21