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We study the phase behavior of ternary amphiphilic systems in the framework of a curvature model
with nonvanishing spontaneous curvature. The amphiphilic monolayers can arrange in different
ways to form micellar, hexagonal, lamellar, and various bicontinuous cubic phases. For the latter
case we consider both single structu(ese monolayerand double structuregwo monolayers

Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the
families G, D, P, CP), I-WP, and F-RD. The stability of the different bicontinuous cubic phases can
be explained by the way in which their universal geometrical properties conspire with the

concentration constraints. For vanishing saddle-splay modylabknost every phase considered has
some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed

by sufficiently negative values of the saddle-splay modutysve find that they can exist for
considerably lower values than obtained previously. The most stable bicontinuous cubic phases with

decreasing?<0 are the single and double gyroid structures since they combine favorable
topological properties with extreme volume fractions. 2000 American Institute of Physics.
[S0021-960600)70306-0

I. INTRODUCTION ous cubic phases, the surfaces of constant mean curvature are
. . triply periodic. Safran and co-workers considered the same
As a function of concentrations and temperature, am- . .
S . . geometries and showed that the interplay between the bend-
phiphilic systems generically form many different phases; . .
g . . ing energy and the volume constraints can explain some as-
each of which corresponds to a specific geometrical arranges . . s the qeneric phase behavior of ternary amphiphilic
ment of the amphiphilic interfacé€ Most ternary am- " 9 b y amphip

-10 . .
phiphilic systems feature the disordered micellar, the hex—z i):i;?emiruc![ﬂrré?c:::(e:uﬁgryvdzr;gera;nd dstifééq;g%%?édi;?:cxree
?ngoonnoall;yzrsd V\}Eiih Is;?)(;l:?\:e E:;zi's 0|_f|3;Ztetrhfforgrpepg%pnhsllIg(ftwo monolayersfrom the D-family. Their calculation relied

: ' . : on data for triply periodic surfaces of constant mean curva-
oil, form spheres, cylinders and lamellae, respectively. HOW-ture which were found numerically by Anderson. who in-
ever, many of these systems also have stable cubic pﬁ‘é’ses.vest’i ated the geometrical bro e?ltie: of the D, RPIC
Near the disordered micellar phase one often finds a micellq 9 g brop '

r ) 0 d1,12 nti }
cubic phase and near the lamellar phase a bicontinuous curtht]i)cWP’ and F-RD families.**However, the bicontinuous cu

phase. In the micellar cubic phase, the interfaces for ic phases most often identified experimentally are the vari-

spheres as they do in the disordered micellar phase, only th?ys gyroid struct.ures which correspond to Giéamily. Data
now they are packed in an orderly fashion. In the bicontinu-°" the G-family \ﬁere _calculated onIy_ recently by
ous cubic phase, they form sheets which span the Wholgroﬁe-BraU(':kman?ﬁ' In' this work, we consider as bicon-
sample in all directions of spaé€.Each of these triply pe- “”“9_“5 cubic _phases S'”Q'e and d°“'€"e structuresafor
riodic surfaces has a cubic Bravais lattice and divides spacf@m'“e_s for which th(.a required geome_tncal data are kno_wn,
into two unconnected but intertwined labyrinths filled with including the G-family. Indeed, we find that for negative
water and oil, respectively. values of the saddle-splay modulus of all bicontinuous

In this work, the polymorphism of ternary amphiphilic cubic phases considered it is mainly the glroid structures
systems is studied in the framework of a curvature modeWwhich are stable. They can exist for valuesrofvhich are
with nonvanishing spontaneous curvature. We assume théwice as negative as the values for which the structures from
the shape of the amphiphilic monolayers is determined byhe D-family have been found to be stable previodSiywe
their bending rigidity even in the presence of concentratiorwill show that this finding can be explained nicely by con-
constraints. Therefore we model them byrfaces of con- sidering the interplay between certain universal geometrical
stant mean curvatureThis encompasses the spheres, cylin-properties of the various bicontinuous cubic phases and the
ders, and lamellae of the noncubic phases; for the bicontinurolume constraints within the Gibbs triangle. In fact we find
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that the gyroid structures are so favorable because they hag@d tail regions of similar size, as they are fop,E. The
exceptional topological properties and at the same time canydrocarbon volume fraction is given by=po+ ap,.® In
accommodate extreme volume fractions of oil and water. order to parametrize concentration space, it is convenient to
usev and the ratiov=pa /[ (po+ apa)Col ]. The amphiphile
volume fractionp, is taken to beAl/V. If the amphiphile is
assumed to occupy the space between the two parallel sur-
The elastic properties of amphiphilic interfaces are defaces at distancesl and (1- «)l from the neutral surface,
scribed by the Canham—Helfrich expression for the elastithis is a very accurate approximation when the amphiphile
energy per unit are&; length | is small compared to the extension of the am-
5 — phiphilic aggregates, and gives reasonable results even for
Ferasic= 2 (H = Co) "+ xK, (D) the extreme case of oil-free spherical micelles dot1/2.
whereH=(c;+c¢,)/2 andK=c,c, are mean and Gaussian In the following all lengths are measured in unitslof
curvatures, respectively, ang andc, the two principal cur- ~ The free-energy densities of the noncubic phases follow from

Il. CURVATURE MODEL AND NONCUBIC PHASES

fL(w,v)=wv, (3)

fg(w,v,r)=wv

vatures of the surface. The two elastic moduli are the bend&q. (2) as
ing rigidity x and the saddle-splay modulus The main

temperature dependence is carried by the spontaneous curva-

ture cq. For systems with water, oil and nonionic surfactants )

_CiEJ- , itis found experimentally thatooc_(_Tb—T), WhergTb fc(w,v)zwv(v—v—1> , (4

is the balanced temperatureHere positive curvature is de- 4

fined to be curvature towards the oil regions, thus oil is the

interior phase below the balanced temperature and water (V_V_l>2_ ﬁ} ®)
above. For example,co~1/(6l) and cy~1/(12) for 3 9 |

H,0/C4/C5E5 at T=20°C and T=34°C, respectively,

wherel~1.5 nm is the amphiphile length in the monolayer Note that onlyf s depends om, since the other two structures
and T,=48°C1" In this work, we assume a positive value have no Gaussian curvature. Since we only consider the free-
for the spontaneous curvature, as it is typical for surfactanenergy contribution due to the curvature elasticity of the am-
systems below the balanced temperature, so that oil is theghiphilic monolayers, for the noncubic phadesas a trivial
interior phase. The tendency to bend towards the oil regiong-dependence. However, due to close packing, spheres and
decreases with temperature since the headgroups’ hydratiaylinders have maximal volume fractiong,,,= 2716
decreases. For the case of a negative spontaneous curvature)).74 andm/2\/3=0.91, respectively. Withv, v, andr, the
water and oil have to be interchanged in the various strucmodel has a three-dimensional parameter space.

tures as well as in the phase diagrams presented below. This It can be seen from Ed3) that the Maxwell construc-

is usually the case not only for surfactants above the baltion is not possible for this model, sindg is not concave.
anced temperature, but also for lipid systems where th&herefore we use the intersections of the free-energy densi-
monolayers tend to bend towards the water regions due ttes of different phases as an indication for the location of

their bulky tail regions. phase transitions. We want to remark parenthetically that
We consider the dimensionless free energy per unit volWang and Safrafl considered the free energy per unit area
ume, (rather than per unit volumgthis amounts to an overall

A (H 2 5 factor ofwv/cg (the dimensionless specific ajea the free-
f ,:_(__1) _£mXr (2  energy density of all phases. As long as the location of the
St eV | e cv ' phase transitions is estimated from the intersection of the
free-energy curves, the two approaches are equivalent. How-
the amphiphilic monolayers/ is the overall volume, and ever, for a calcula_tion of two-phase regio.ns, the use of the
' free energy per unitolumebecomes essential—since in gen-

=~ «/2k. For the first(bending term in Eq.(1), the area  grg) coexisting phases will have different amphiphile concen-
integration can be carried out since we only consider Surg aiions.

faces of constant mean curvature. For the sedtoublogi- For r=0 (vanishing saddle-splay modulusand v
ca) term, we employ the Gauss—Bonnet theorgidAK 0 74 (no excluded volume effedtsEgs. (3), (4), and (5)
=2y, wherey is the Euler characteristic of_the surface. imply the phase sequende—C— S with decreasingw. fs
The curvature model is only stable fer2k<x<0 or 0  begins to rise again fow=3. This is identified with the
<r=1.? Experimentally there is no straightforward way to emulsification failurethe coexistence dand an excess oil
measurex, but usually a small negative value is assumed. phase at low amphiphile concentratitfhin this paper, we
The phase diagram at constant temperature is a functiodefine the emulsification failure not as the minimunt gin
of the volume fractiongyy,, po and p, of water, oil, and regard tow, but by using a Maxwell construction in regard to
amphiphile, respectively, which are restricted to the Gibbsv betweenS and an excess oil phase, i.e., by solving
triangle by pw+po+pa=1. We consider amphiphiles of dfg/dw=fg/w for w. With increasingr (and v<0.74),
length |, which have a tail lengthel and a head size (1 spheres become more favorable, while cylinders are increas-
—a)l, with 0<a<1. Throughout this paper we will use  ingly suppressed and finally disappear for 1/4. In particu-
=1/2, i.e., we will consider amphiphiles which have headlar, the phase boundari&-C, S—L, C—L and the emul-

f=

2kC3V

where the integration extends over the neutral surfacd
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/ // FIG. 2. Minimal surface members for the following families of triply peri-
Z / // odic surfaces of constant mean curvatue:D, (b) C(P), (c) I-WP, and(d)
L F-RD. Shown is one conventional unit cell. For single structures with van-
w 0 ishing mean curvature, these surfaces represent the oil-water interfaces.

FIG. 1. Correspondence between thew)-plane and the Gibbs triangle.

Only a certain part of they,w)-plane is mapped onto the Gibbs triangle. curvatureH=(c.+¢,)/2. For the special casel=0. this
The mapping depends on the values for the amphiphile chain lengitd (C1+co)l2. P !

for the spontaneous curvatum. Throughout this work we use—1/2  €@ds to triply periodic minimal surfaces with =—c; and
(length is measured in units of amphiphile lengtfor co=1/6 andc, ~ K=C1C,<0. Due to the Gauss—Bonnet theorefidAK
=1/12, the darkly and lightly shaded parts are mapped onto the Gibbs=27y, these surfaces have a negative Euler charactegistic
triangle, respectively. Water, amph_iphile, and oil apex of the Gibbs triangleper unit cell. Triply periodic minimal surfaces are commonly
are denoted by, A andO, respectively. used to model all kinds of extended sheetlike structures in
condensed matter systems, in particular the midsurfaces of

sification failure are obtained from Eq8), (4), and(5) to be  the lipid bilayers ininverse cubic phasewhich are very
w=24/(7—16r), w=6/(1—r), w=8, andw=3/(r —1), re-  prominent in lipid—water mixture$’ Before 1970 only three
spectively. cubic triply periodic minimal surfaces have been knon

It is important to realize that not all values of (v) are P and GP)]."**Then Schoen described five mg@, F-RD,
physically relevant. In Fig. 1 we show the mapping betweer-WP, O, C-TO and (D)].** Today some more examples are
the (v,w)-plane and the Gibbs triangle for ternary mixtures.known?? but none of them seems to be of physical rel-
The binary limitsO—W, W-A, andA—-O of the Gibbs tri-  evance. Karcher proved in 1989 not only the existence of the
angle correspond tpg+pw=1, pwtpa=1 and pa+po  triply periodic minimal surfaces described by Schoen, but
=1, respectively. In they,w)-plane, this corresponds to the also that the simpler of them can be deformed into triply
lines w=0, w=1/(ac,) andw=(1A—1)/((1—a)c,), re-  periodic surfaces of consta@itonzerg mean curvaturé® As
spectively. The lin&=0 is mapped onto thé/-apex. Figure for any triply periodic surface, space is divided into two
1 demonstrateor = 1/2) this mapping of the,w)-plane  percolating labyrinths. A shift oH to positive/negative val-
onto the Gibbs triangle foc,=1/6 andcy=1/12. As men- ues shrinks/expands one labyrinth, while it expands/shrinks
tioned above, these values correspond to the systeithe other. Thus two branches are generated, which both end
H,0/C,,/C,Es at T=20°C andT=34°C, respectively/  in cubic arrangements @infinitesimally connected and pos-
Smaller/larger values for the spontaneous curvatwteich  sibly self-intersectingspheres. Since the Euler characteristic
corresponds to higher/lower temperatures or other compds a topological quantity connected to the gemusf the
nentg increases/decreases the size of the relevant region Burface byy=2(1-g), it does not change within a family.
Fig. 1(a) to larger/smaller values of. One also can see in Anderson studied the cubic families D, P(RE I-WP, and
Fig. 1(b) that for a=1/2 lines of constart are perpendicu- F-RD and calculated for a conventional unit cell of unit lat-
lar to theW—0 side and lines of constamtare straight lines  tice constant both the volume fractionof one labyrinth as a

through theW-apex. function of scaled mean curvatuk* (the volume fraction
of the other labyrinth follows as-1v) and the scaled surface
l1l. BICONTINUOUS CUBIC PHASES areaA* as a function ofr.***2 Recentlyv(H*) and A* (v)

were calculated also for the G-family by
GroRe-Brauckmanti4

We model the amphiphilic monolayers in the bicontinu- In this work we consider the families G, D, P,
ous cubic phases by triply periodic surfaces of constant mealnWP, and F-RD, for which these geometrical data are avail-

A. Properties of constant-mean-curvature surfaces
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A I TABLE I. Properties of the families of triply periodic surfaces of constant
mean curvature, which are related to their minimal surface mempexad
A, are the Euler characteristic and the surface area in the conventional unit

n
o
o
-
)
2

4 cell [the value ofA, is known exactly in terms of elliptic functions for G, D,
C(P) P, QP), and I-WP(Refs. 21, 48]. T',= (A3/27| x|) 2 is the topology index;
|.Wp/=‘ the structures are ordered with respect to decreasing magnitudge of, is
D the volume fraction of one of the two labyrinths; the volume fraction of the

other one follows as *v,. c=dv(H*)/dH*|yx -, wherev(H*) is the
volume fraction of one of the two labyrinths for the corresponding family of
V—\ surfaces of constant mean curvature. The values for D, I-WP, and P are
> 1 G taken from Ref. 12, the ones for G, F-RD, an(PCare obtained from our
spline interpolation of the numerical data of Ref. £2=—A2/2my is the
estimate ofc as derived in the text. Note thatA, gives a very similar

0.2 0.4 0.6 0.8 v hierarchy ax’ Ag=T"3.
X Ag Iy Vo c c’ cAy
H*
4 D (b) G -8 3.0914 0.7667 0.5 0.2191 0.1901 0.6773
D —16 3.8378 0.7498 0.5 0.1411 0.1465 0.5415
5 G p~_ -wp F-RD I-WP  —12 3.4641 0.7425 0.536 0.1385 0.1592 0.4798
P —4 23451 0.7163 0.5 0.2117 0.2188 0.4965
F-RD —40 4.7707 0.6573 0.532 0.0665 0.0906 0.3173
0 C(P) —-16 3.5105 0.6560 0.5 0.0466 0.1226 0.1636
C(P)

F-RD, the two labyrinths are of different topology awng
#1/2. In Table I, we collect data connected to the minimal
v surface members of each family, which we will use later in
FIG. 3. Geometrical data for triply periodic surfaces of constant mean cur-Our d|scuss!o.n.. .

vature:(a) scaled surface are&* and (b) scaled mean curvatutd* as a In the vicinity of the minimal surface, the volume frac-
function of volume fractionv. Each family exists only for a certain tion v as a function of scaled mean curvatui& can be
v-interval. We only show the two branches connected by the minimal Surapproximated aS/(H*)=V0— cH* + (’)(H*z)_ With dA*

0.2 0.4 0.6 0.8

face member; there exist other branches within the sasimtervals which —2H*dv it follows that

correspond to dense arrangements of nearly spherical regions connected by

small necks. They are assumed to have no physical relevance. The two (V—Voq)

branches used are symmetrical for G, D, P, arif}) Gince their minimal H*(v)=——— +O((V_VO)2)a
surface members are balanced. c

(V=Vg)? ©

V—V
* — _ — 3
able. Their minimal surface members are shown in Fig. 2 for AT(V)=Ao c +Ov=vo)")

D, C(P), I-WP, and F-RD in one conventional unit cell. The near the minimal surface. The values &, vo, ¢ are given

: ) N .
numerically calculated data points fo(H*) andA* (v) per in Table I. Since the surfaces of constant mean curvature can

conventlon.al unit ce!l are t.aken frlom R.efs. 11, 13; rearrangep expected to have similar geometrical properties as parallel
ment and interpolation with cubic splines provides smooth

functions v(H*), H*(v), and A*(v). The data are used surfaces in the vicinity of a minimal surface, the magnitude

. of ¢ can be estimated as follows.tlflenotes the perpendicu-
only up to the extremal values of beyond which the curves Perp

i lar distance from the minimal to its parallel surface, to lowest
bend backwards. Beyond these points, the surfaces resemble,” ~. . N

. . order int the volume fractiorv and the mean curvatutd™,
ensembles of spheroidal regions connected by nearly undu-

loidal necks, which we do not consider to be of phy:sical{’“/erager\/erthe surface in the whole gnit CSIZI; are given by
relevance The functionsH* (v) andA* (v) as used in this \;=2\7/To+(\'/°~3tva;1 /Cx_zi ;: dz;Xt_’ﬁg ;Zfsggfilk\]/glfé’ralI-(I;T:a;';ce
work are plotted in Fig. 3 for the six families considered. In X 07 "0 oremX P

. .~ case. The corresponding numbers are given in Table I; ex-
fact, only one of the two curves for each family carries in- P g g

) : X f P), th Il ith th ical
dependent information since the other one can be constructé:grpé ics)rrgmgr:(ailc;/\/g(r)i dagreement with the numerical data

by using dA* =2H*dv.'? Each family only exists over a
certain range of volume fractions; the extreme cases are the
G-family with v e[0.056,0.944 and the QP)-family with

v €[0.481,0.519. If the minimal surface member of a family
divides space into two congruent labyrinths, they have the The simplest case of a cubic bicontinuous phase in a
same volume fractiowy=1/2, the two branches are sym- ternary amphiphilic system is single structurewhere the
metric to each other and the minimal surface as well as thamphiphilic monolayers fornone triply periodic surface.
family itself is calledbalanced For the structures considered Then one labyrinth is filled with oil and the other with water.
here, this is the case for G, D, P, an€PC For these struc- For balanced families, filling either of the two labyrinths
tures, the curvesi* (v) and A*(v) are symmetrical with with oil gives the same single structure; for the nonbalanced
respect tov=1/2. For the nonbalanced families I-WP and families I-WP and F-RD, this yields different single struc-

B. Single and double structures
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TABLE II. Distribution of oil, water, and amphiphile in the different struc- and double gyroid structures in one conventional unit cell.
tural types of bicontinuous cubic phases. Q denotes single structures, (]3_-0[. many surfactant—water and Iipid—water systems, G
double structures of type(bil-in-water), and Q double structures of type Il d/ I blished: h !
(water-in-oil or inversg Although double structures consist of two am- NA/0Or D are we eSt.a Ishe '_moreovert.er(_e. are repc_)rts on
phiphilic monolayers, for this classification we consider each structure to?; and G structures in these binary amphiphilic SySt%.
consist of one triply periodic minimal surface separating two percolatingQ structures in binary systems have been discussed only
labyrinths. theoretically so faf®~3! For many systems with water, oil,
Structure  Labyrinth 1 Surface Labyrinth 2 @nd surfactant, stable bicqntinuqus c_u_bic_phases have been
reported, however often without identification of their space

8 L’)‘ﬁ’“er W”:t’g:_’f'ﬁ‘lizrb”ayer O‘i’l“ group(see, e.g., Ref. 32 for the system®IC,,/C;,Ez). The
Q:I water oil-filled bilayer water best established identification is a number gf Sructures

for the system DDAB—water—styrei@There are a few re-
ports on Q structureS;3* and none on Qstructures. How-

) ) ever, several speculations on single structures can be found
tures which we denote by I, WP, F, and RD, respectidely. i, the literature(e.g., in Refs. 27, 35 and our recent theo-

Here the symbols | and F correspond to the curves plotted fofetical work on ternary systems with vanishing spontaneous

replacementg —1—v andH— —H from the data of | and F  pjicontinuous cubic phases in ternary systems with water, oil,
plotted in Fig. 3, respectively. Thus, altogether we consider & |ipid.

different single structures, which exist for the volume inter- In order to construct a double structure from a given
vals[0.056,0.944 for G,[0.131,0.869 for D, [0.249,0.751  tamily of triply periodic surfaces of constant mean curvature,
for P, [0.481,0.519 for C(P), [0.357,0.857 for I,  \ve take two surfaces corresponding kband —H. Thus
[0.143,0.643 for WP, [0.439,0.62% for F, and there is one Qand one @ structure for each of the six
[0.375,0.56] for RD. families. For Q structures, the minimal surface case corre-

To each single structure corresponddaible structure  sponds tos=1. As both surfaces accumulate mean curvature
where the amphiphilic monolayers fortwo triply periodic iy their respective branches, the volume fraction decreases
surfaces arranged roughly parallel and on either side of thgntj| the first labyrinth reaches its minimal sigehich is the
minimal surface of the corresponding single structure. Bothyinimal volume fraction of the corresponding single struc-
surfaces divide space into two labyrinths which are topologiyyre). The volume intervals covered by the ructures turn
cally equivalent to those of the initial structure. However, oyt to be[0.112,1.9 for G,, [0.262,1.Q for D,, [0.498,1.Q
since two amphiphilic monolayers are present, now thesgy, P, [0.962,1.9 for C(P), [0.624,1.0 for I-WP, and
labyrinths are filled with the same component and separatefb_gl&l_g for F-RD,. The Q structures follow from the
by a bilayer which is filled with the other component. Single corresponding Qstructures by an interchange of oil and wa-
and double structures are also known as monolayer and bjer. Thus here the minimal surface case corresponds to
layer structure$>?” A double structure can be either of type — g, and the volume fractions covered are complementary to

| (water-filled bilayey or of type Il (cilfilled bilayen.”®  the ones given for the @tructures.
There will be no problem below to distinguish the symbol |

for double structure of type | from the symbol | for one of
the two simple structures of the I-WP family. In Table Il, we _
summarize the classification of bicontinuous cubic strucC- Curvature and topology index

tures. In the following, single structures, type I double struc-  For bicontinuous cubic structures, the free-energy den-
tures and type Il double structures are abbreviated as;Q, Qsity depends on the hydrocarbon volume fractioim a non-
and Q, respectively. Q structures are also known & trivial way, since only one or two amphiphilic aggregates are
verse bicontinuous cubic phasda Fig. 4 we show single present. The lattice constant is denoted wvétHror a given
value ofv, the mean curvaturél(v,a)=H*(v)/a and the
surface are@\(v,a)=A*(v)a? within a unit cell are deter-
mined by the curves plotted in Fig. 3. The amphiphile con-
centration pa=A(v,a)/a’=A*(v)/a fixes a, so thata
=A*(v)Ipa=A*(v)/(wvcy). Using the Gauss—Bonnet
theorem for the Gaussian curvature term, we find from Eq.
(2) for the free-energy density of a bicontinuous cubic struc-

ture,
@ (b) A [H*(v) 2 2axr
fac(W,v,r)= — -1 —
FIG. 4. (3 Sin fami i CoVl Coa (coa)®
4. gle and(b) double structure of the G-family. The two gyroid
structures are the most stable bicontinuous cubic phases for negative saddle (Wv) 3
splay modulusk. For the double gyroid of type I, the water forms the =wWv[A(V)wv— 1]2+r , 7
sheetlike region between the two monolayers which effectively form a bi- I‘(\/)2
layer in (b). For the double gyroid of type I, it fills the two channel net-
works which are separated by this bilayer. with
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H* (v) A*(V)3 1/2 A 1.00 ‘\‘
A(v)= : F(V)=(—) : (8 _
A* (V) 2| x| 0.75
- . 0.50
Here xy denotes the Euler characteristic of the interfaces
within one conventional unit cell, as given in Table I. The 0.25
curvature indexA (v) and thetopology indexI’(v) are two Y S—
universal geometrical quantities which characterize a surface . * Q"'---'-‘.'.'If
) ]

in three-dimensional space. Their significance can be under- g SN
stood rather easily from the observation that both the mean .os50 ) )
and Gaussian curvatures can be made dimensionless by mul A
tiplying them with appropriate powers &/A, which is the
only relevant length scale; this impliegd(V/A)=A and : . : AR
|K|(VIA)2=27|x|VZIA3=1/T"2. Itis not difficult to see that

both quantities are not only invariant under scale transforma-T’
tions, but also under a change of unit cell. They also occurin 14
integral geometry, a mathematical theory concerned with in-
variant geometrical measur&sFor convex bodies in three-
dimensional space there exist two independent isoperimetric 1.0 |
inequalities and therefore two independent isoperimetric ra-
tios, which usually are chosen to Beand 1I'2. The equiva-
lence between these quantities and the isoperimetric ratios g6 [
holds since for surfaces of constant mean curvature, the in-
tegral mean curvature, which is one of the Minkowski func-
tionals of integral geometry, can be replaced . The
curvature indexA describes how strongly the structures is 0 02 0.4 06 o8, 1
curved and the topology inddX describes its porositythe

larger its value, the less holes the structure) Hasr minimal ~ F'G: 5 (8 Curvature indexA and (b) topology indexT" as a function of
’ volume fractionv for all structures considered. Although the different struc-

Sfurfaces/\_ an_iShes and’ remams the only relevant quan- tures can be identified according to thekinterval of existencécompare
tity. Its significance for amphiphilic systems has beenFig. 3), here we intend to demonstrate only the difference between the three
pointed out by Hydé/ and its variation as a function of structural types. For Qsolid liney, Q (dashed lines and Q structures
crystallographic determinants has been studied recently bgott.ed line¥ the curvature index vanishes and th(_e topology index attains its
Fodgen and Hyd& For multicontinuous structures buiid maximal value for=v,, v=1, andv=0, respectively. @ structures and
) . Q structures withv>v, have negative curvature indices and therefore are

from n sheets, the curvature index is smaller and the topolnet stable forc,>0.
ogy index is larger by a factor af compared to the corre-
sponding single structure. In particular, for double structures
the curvature index is half and the topology index is twice ade calculated as a function of For the 8 Q structures, they
large as for single structures. Thus, double structures are lefsllow in a straightforward way from the data plotted in Fig.
porous than single structures since they have disconnectéd In order to derive them for the 6,@tructures, we first
surfaces. We can infer from Table | that the minimal gyroidconsider the nonbalanced case, thus the two labyrinths 1 and
is the least porous of the single structures itk 0.7667. 2 have different topologie®.qg., for I-WP, we have %1 and
We want to remark parenthetically that—surprisingly— 2=WP). We first construct,(H*)=v(H*)+v,(H*) and
bicontinuous random surfaces have similar valued"odis  then invert it to obtairH (v), the mean curvature of both
single cubic structures. For example, it can be shown exactlgurfaces as a function of the overall volume fract{amich
that the isosurfaces of Gaussian random fields With=0 is distributed onto both labyrinthsThe surface area then
havel = \/8/7=0.90033%°Since this value is only slightly follows asA} (v) =A% (vi(H (v))) + A% (vo(Hf (v))). The
larger than that of the single gyroid phase, it can be conEuler characteristic i = x1+ x> (with x;=x, given in
cluded that the random sponge phase on average featur&able ). With H{(v), Af(v), and x, calculated, we then
only few disconnected or multiple sheets. However, whercan evaluateA andI' in Eq. (8) for the nonbalanced Q
the random sponge’s interfaces are made to acquire curvatructures. For the nonbalanceq &tructures, we have to
ture, the topology index grows strongly with since discon- evaluate them usingd}; (v)=—H} (1—v), Aj(v)=Af(1
nected parts proliferat®?. The opposite is true for the fami- —v), and y,=x,. For the balanced families, one hag
lies of surfaces of constant mean curvature considered heresv,=v/2, H (v)=H*(v/2), Af(v)=2A*(v/2), H} (V)
if the mean curvature is increased from zero, the topology= —H*((1—v)/2) and A} (v)=2A*((1-v)/2). This
remains the same, but the area content decreases. Therefaraounts to using A(v)=A(v/2)/2, T (v)=2I'(v/2),
the topology index decreases, since for given topology itA;(v)=—A((1-v)/2)/2, and I';(v)=2I'((1-Vv)/2) in
measures the specific surface area. Eqg. (8). Note the minus sign for the curvature of thg Q

In order to evaluate the free-energy density of the biconstructures since the monolayers change their orientation
tinuous cubic phases from E(f) as a function ofv, v, and  compared to the @structures. In Fig. 5 we plot andI” as
r, curvature and topology index as defined in B).have to  a function ofv for all single and double structures consid-
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ered. Recall that the minimal surface case corresponds to
=vg, 1 and 0 for Q, Q and @ structures, respectively; in
these cases, the curvature index disappears and the topology
index acquires its maximum value. In Table |, we give the
values ofI'y=T"(v=vg) for all families considered. This
implies the hierarchy G, D, I-WP, P,(B), F-RD with de-
creasingl’y. From Fig. 5 we also see that the single struc-
tures | and WP in fact can become better than single D for
certain values of.
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We see from Fig. 5 that single structures forv, and 5
all Q, structures have negative values for the curvature index
A. From Eq.(7) it therefore follows that these structures
have fgc>wv="f_, compare Eq(3); thus they are always
less stable than the lamellar phase. In other words, since we
consider the case that the monolayers prefer to bend towards
the oil regions(positive spontaneous curvatueg), in the
framework of the curvature model no phase can be stable
which curves towards the water regions. One should note,
however, that single structures for-vy or Q, structures
could occur even for positive, if they were stabilized by
other contributions to the free energy which are neglected in
our treatment. For the case of negativg the situation is
reversed; now the monolayers prefer to bend towards the
water regions, and from the double structures (iheerse
Qu and not the Qstructures are stable. In general, for ternary
systems one expects Q in the middle of the Gibbs triangle
(possibly in the vicinity of a microemulsion phase for sur-
factant SyStem.s Q negr the bmafry .Slde amphiphile—oil and IG. 6. Lines of vanishing frustration of various structuresrferO. In the
Qu near the. binary side amphiphile—water. For surfactan v,w)-plane, the linesv(v) correspond to values fow(,v) where a specific
systems, which usually hawg>0 at room temperature, the phase has vanishing free-energy density. Worl the Q and Qstructures
curvature model predicts the stability of Q andsQructures; are stable fov=<v, andv=1, respectively. The lines ar=3 andw=4
for lipid systems, which usually have,<0 at room tem- correspond to sphgres_ and cylinders, respegtivelqueﬂ/B, only the part
perature, Q andinverse Q, structures are predicted. This below the dotted line is mapped onto the Gibbs triangle.
general prediction conforms with the predominance of in-

verse phases for lipid—water mixtures. Note that the_surfact-hem has some region of stability where its particular geom-
tant sy_stems DDA_Bfwa_ter—styréglenentloned above_ IS an etry serves best to accommodate the volume fractions of the
exceptl_on to our dlstm_ctlon between surfactant and lipid SYSyitferent components. In fact there are even several values of
Fems since the tvyo t§|ls reslul-t 5<0 and therefore lead to (w,v) where the free-energy density of different structures is
inverse phases like in the lipid case. degenerate. In Fig.(B) we map the lines of vanishing frus-
tration from Fig. &a) onto the Gibbs triangle foc,=1/6.
For these values, the Q structures run towards the W-A side
and the Q structures towards th&—O side. Although the
lines of vanishing frustration for @), C(P),, and F-RD are
Altogether we consider 17 different phases, 3 noncubicnot mapped onto the Gibbs triangle, the phase behavior here
8 single, and 6 double structures of type |. Moreover thereaemains highly degenerate.
always exists an emulsification failure at low amphiphile-to-  Figure Ga) demonstrates that the different structural
oil ratios. We first discuss the case of vanishing saddle-splatypes considered occupy different regions of the phase dia-
modulus,r=0. For the bicontinuous cubic phases we seegram in a very characteristic fashion; for lange Q, and Q
from Eq. (7) that the optimal valué =0 for the free-energy structures are stable fer<1/2 andv=<1, respectively. With
density is achieved fow(v)=1[vA(v)]. For the spherical decreasingw, the regions of stability curve to the left. In
and cylindrical phases we find(v)=3 andw(v)=4 from  order to understand the sequence of phases within the band-
Egs.(5) and(4). For each phase the corresponding ling) like region of each structural type for large it is useful to
lies in the middle of its region of stability; these lines are expand the free-energy densities of the various bicontinuous
plotted in Fig. &a) instead of the full phase diagram for  structures about the minimal surface members by using Eq.
=0. In the following we will denote them dimes of vanish-  (6). For the Q and Qstructures, this corresponds to an ex-
ing frustrationsince they mark the specific parameter valuespansion about the volume fractiong and 1, respectively.
for which a given phase can satisfy both bending and conAgain we only consider the lines of vanishing frustration for
centration constraints simultaneously. In thew)-plane, which f=0 and w(v)=1[vA(v)]. The curvature index
each of the structures considered has such a line, thus eachafv) defined in Eq(8) can be approximated by

0]

IV. PHASE BEHAVIOR

A. Phase diagrams for r=0
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r v=0.1, (b) v=0.2, (c) v=0.4, and(d) v=0.6. Forc,
=1/6, only the region below the dashed line is mapped
onto the Gibbs triangle. The most stable phase with

20 20 respect tor is the double gyroid Gwhich however
‘f’ cannot exist fov<0.112.
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—(V—Vp) ) curvature. However, spheres have positive Gaussian curva-
A(v)= TJFO((V—Vo) )s ture and therefore their free-energy density decrepsas-
) pare Eq.5)]. Since bicontinuous cubic phases have negative
A _(1-v) o1 ) (integra) Gaussian curvature, their free-energy density in-
(V)= 4AcA, +O((1=v)9). creasegcompare Eq(7)] and they will be suppressed to-

wards largew by the lamellar phase and towards snvalby

%he cylindrical phase; these phases in turn will for suffi-
ciently larger be suppressed by the spherical phase. Since
ternary amphiphilic systems presumably have negative but
"Snall values of the saddle-splay modulus, the important

In the same order of approximation, the lines of vanishin
frustration then follow asw=—cAg/vo(v—Vvy) and w=

—4cAy/(v—1) for Q and Q structures, respectively. Thus
the minimal surface case corresponds to the stable solutio

Ior W>d1 atv=fvt?1 andv=1, re;pectltvel);, Whe(;? the curva- questions here are up to which valuerothe bicontinuous
ure |nF_exe§ OF etrtl:orrsslpon '(;19 S “:C urtes tlsap@mudl- h cubic phases remain stable, and which of the 14 different
paré 9. 9. For the balanced single STUCIUres and Mg o1 res considered performs best. It follows from &.
double structures the h|era_rchy of the dlff_erent phases W'th_"?hat the relevant quantity is the topology index: the larger its
the bandhke. region occupied by a certa.ln structu.ral ty.pe 'Ralue for a certain bicontinuous cubic structure which is
thus determmed.by th.e. values .C'AO’ which are given N stable forr=0, the longer this structure stays stable with
Table | for the six families considered. The only exceptlonincreasirlgr Figure 5 shows that for any value of the

are the fou.r no'nbalance.d single structure;, W.h'Ch cannot bc?ouble structures have larger geometry indices than single
compared in this way, since the value foy is different for

. R 2 structures. Within each of the two relevant structural classes,
gach of them. Usmg the azpprOX|mat|m—A0/2wX Qe- it is the gyroid structure which has the largest value of the
rlved_ above, we fmc_bAO~F » S0 that the sequence 1S ap- topology index(compare Table)l We therefore conclude
pr_o>_<|mately determined by the topqlogy index of thethat the double gyroid (Bhould dominate phase behavior for
minimal-surface member of each family. In fact the struc-

i in Table | dered with d | deul r>0 for topological reasons. However, there are three re-
ures in Table | are ordered with decreasing In particular, strictions to this general conclusion. First,&n only realize

for a given st_ructural type and .values.of the hydrocgrborbe[olllz'l_q_ Second, before Gcan dominate all other
volumev outside the(rather restrictedv-intervals of exis- bicontinuous cubic phases with increasingt might be al-

tence of I-WP, F-RD, and (@), we expect from Eq(9) to ready dominated itself by the lamellar phase L and the cy-
find the sequenc&—D-P as dunction of eitherv or w. lindrical phase C. And third, since the topological term is
weighted by a factorwv)® in Eq. (7), the double gyroid
cannot perform so well for small as it can for largew.

When the saddle-splay modulus becomes negative, so Our numerical results nicely corroborate this analysis
thatr>0, the free-energy densities of lamellae and cylindersand shows the exact outcome of the balance between the
do not change since these structures have vanishing Gaussidifferent principles mentioned. In Fig. 7 we show phase dia-

B. Phase diagrams for r>0
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A predicted that the most stable phase should bevith a

stability limit of r=0.1. Forv=0.1[Fig. 7(a)] the double
&\
F
A
b)
EF
A
c)

gyroid cannot exist and the single gyroid G is the only stable
bicontinuous cubic phase. Fer=0.6 [Fig. 7(d)] the single
(
’
(
,‘

structures are not stable since their curvature index is nega-
tive for v>v, [compare Fig. @)]. If more than one structure
is stable within one structural class, we see the sequence
G-D—-Pwhich was shown above to be determined by the
topology index as well.
In Fig. 8 we show the Gibbs triangles foe=0.01 and
Co=1/6, r=1/15=0.07 andcy,=1/6, as well ag =1/15 and
co=1/12. In the first case of a very small value of the saddle-
splay modulus, one still sees the degeneracy of the case
=0. For the more negative value, only the single gyroid G
and the double gyroid Gare stable. Comparing with Fig. 6,
we see that the G-phase is stable near its extremal volume
fraction ofv=0.056, while the Gphase is stable for a large
range of volume fractions, which covers the region of the
Gibbs triangle where its line of vanishing frustration is lo-
cated forr=0. The effect of decreasing spontaneous curva-
ture fromcy=1/6 in Fig. 8b) to c,=1/12 in Fig. 8c) is to
extend the region of stability of the lamellar and bicontinu-
ous phases away from th¥—A side, towards the center of
the Gibbs triangle.
FIG. 8. Phase behavior in the Gibbs trianl 0.01 U6 (b geometrical character of the problem studied. It consists of
e OEZ?;:;;’/ET ;?“;(Ce) r:'lliSt”?:Ef/g Cor I'arg’ecrov_alue’s(qz two terms; the bending term depends on the curvature index
the gyroid structures G and, @ominate. Lowering spontaneous curvature / @nd the topological term depends on the topology iridex
¢, corresponds to raising temperature and extends the region of stability fof he relative strength of the two terms is determinedr by
the Iamella_r phase L. 'For simplicity, in these plots we do not consider the_;lzK_ The relevance of the two quantitie‘s andT not
close-packing constraint for S. .
only depends om, but also on the way by which they are
weighted in the free-energy density by the two variahles
andv which parametrize concentration space. Several prop-
grams as a function o andr for v=0.1, 0.2, 0.4, and 0.6. erties have to conspire for a specific phase to be stable at a
Sincew, v, andr define the parameter space, these figuregertain point of the phase diagram. First, its geometrical
show nearly the complete phase behavior predicted by thproperties have to allow to accommodate the given concen-
model. Only the subsequent mapping onto the Gibbs triangl&ations(this imposes some constraints on the allowed values
is affected by the chosen values ferandc,. In Fig. 7, we  for the hydrocarbon volume fraction). Second, the result-
draw the lines of constant, which marks the upper edge of ing mean curvature must be close to the given spontaneous
the part of the ,w)-plane which is mapped onto the Gibbs curvature in order to keep the bending term small. Since
triangle for «=1/2 andcy=1/6. The degeneracy of the bi- there are two independent degrees of freedom in concentra-
continuous cubic phases foe=0 discussed above disappearstion space, one of which is sufficient to adjust the mean
quickly with increasing. They eventually all disappear be- curvature to its optimal value, the regions of stability are at
cause the lamellar phase L and the cylindrical phase C bdeast one-dimensional in the (w)-plane forr =0. The exact
come more stable. At=0.25, C itself is suppressed by the location of these lines of vanishing frustration is determined
spherical phase S. The double gyroig l@mains stable for by the curvature indeA (v). Phases with negative curvature
larger values of than all other bicontinuous cubic phases. Inindex A are less stable than the lamellar phase. For positive
fact forv=0.2[Fig. 7(b)] it is stable up tad =0.2. This result spontaneous curvaturgnonolayer bending towards oil re-
stands in marked contrast to the results of Ref. 10, whiclgions, this rules out the single structures forv, and the

V. DISCUSSION AND CONCLUSIONS

In order to calculate phase behavior of ternary am-
phiphilic systems, we investigated a simple curvature model
with nonzero spontaneous curvature. In particular, we fo-
cused on the bicontinuous cubic phases whose interfaces
were modeled by triply periodic surfaces of constant mean
curvature. We showed that for this class of surfaces, the free-
energy density of the bicontinuous cubic phases can be writ-
ten in a very general form which emphasizes the universal

w e}
w 0
w e}
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double structures of type Il. Third, for>0 the structure has their universal geometrical properties and the concentration
to be favored by the topological term also. This requiresconstraints of a ternary system. The main result is that the
large values for the topology inddXv) and basically favors gyroid structures are favored since they have the largest val-
the double gyroid G Fourth, the concentrations in the re- ues for the topology indeX, that is the smallest porosity
gions of stability have to be physically relevant, i.e., theyamong the bicontinuous cubic phases. It should be pointed
have to correspond to those of the Gibbs triangle. The mapsut, however, that this work rests on the basic assumption
ping of the phase diagram as a functionvoAndw onto the  that all structures form surfaces of constant mean curvature.
Gibbs triangle depends on specific values for the amphiphil&uch surfaces arise as minima fafA under a volume con-
chain lengtha and the spontaneous curvatageand cuts off  straint, or as minima of dA(H — c)? without volume con-
some of the phase behavior in the,\{)-plane. straint, but they arenot solutions to fdA(H—cg)? under

The phase behavior far=0 is highly degenerate. This volume constraint—except for the special case of vanishing
degeneracy has been discussed already in Ref. 41 for tHeustration, where the surface witH=c, just satisfies the
Canham—Helfrich Hamiltonian without spontaneous curvavolume constraint. It is easy to understand that, in general,
ture and concentration constraints. In order to resolve thsurfaces of constant mean curvature do not minimize the
guestion of the relative stability of the different bicontinuous curvature energy with volume constraint, since the energy
cubic phases, one has to consider further physical effects likean be lowered by keeping the mean curvature on the largest
topological contributions r>0), van der Waals, electro- part of the surface very close @, and by concentrating
static or steric interactions, higher order curvature tétras  deviations fromH = c,—which are enforced by the volume
packing energies for the hydrocarbon chdh® Our analy-  constraint—to a small part of the surfa¢ehich therefore
sis shows that although every phase considered has sommakes a small contribution to the curvature integrilow-
region of stability in phase space, there are certain generaver, since the regions of stability of most bicontinuous
principles which allow to understand the complicated strucphases do not extend very far from the lines of vanishing
ture of the resulting phase diagram. The locations of thdrustration in the phase diagram, the deviations of the exact
regions of stability are determined by the curvature index solutions from surfaces of constant mean curvature can be
we have derived a simple approximation far, which is  expected to be small for the physically relevant regions.
valid for largew and explains why Q and 'Gtructures are In this work, we focused on the case of finite and posi-
stable forv=<1/2 andv=1, respectively. Moreover, it turns tive spontaneous curvature. Its value can be controlled in
out that the sequence of phases within the bandlike regioremphiphilic systems by changing temperature and disappears
of a certain structural type is determined by the value ofat the balanced temperature. Above the balanced tempera-
cAg, Which in turn can be well approximated B}§. Thus ture, the spontaneous curvature is negative and oil and water
the relative location of the different phases of one type ishave to be interchanged in the structures and phase diagrams
determined by the topology index of the minimal-surfacediscussed. Then the double structures of type | are replaced
member of that family. by the double structures of type (the inverse phasgsnd

When the saddle-splay modulus becomes negative, mothe phase boundaries in the Gibbs triangle run predominantly
and more of the cubic bicontinuous phases disappear untibwards the oil apex. For surfactant systems, the balanced
eventually all of them are suppressed by the noncubitemperature is usually well above room temperatdral-
phases. However, we found that the bicontinuous cubithough the curvature model presented here predicts inverse
phases remain stable for considerably higher valuedlwdin  bicontinuous phases above the balanced temperature, they
found previously*® Since the structure performs best which are probably destroyed by thermal fluctuations in this case.
has both a high topology index and can accommodate larg€or lipid systems, the balanced temperature is usually similar
ranges of hydrocarbon volume fraction the double gyroid to the main transition temperature, and inverse phases are
G, becomes the most stable bicontinuous cubic phase fguredicted even at room temperature. In accordance with ex-
increasing . Note that Gis the only double structure of type periments on both kinds of systems, the model presented in
| where the oil-filled labyrinths consist of channels, whichthis paper predicts that the lamellar phase dominates at the
are connected by junctions of threefold coordination exclubalanced temperature. However, since it assumes finite spon-
sively. Its outstanding stability with respectrt@an therefore taneous curvature and neglects thermal fluctuations, it cannot
be explained by the fact that it is the most cylinderlike of thedescribe the bicontinuous microemulsion phase which for
bicontinuous cubic phases. The same geometrical property surfactant systems often coexists with the lamellar phase
fact can stabilize also the entropy-dominated microemulsioround the balanced temperature.
since low-coordinated vertices provide a lot of configura-  We did not consider the effect of thermal fluctuations or
tional entropy** Since with increasing the double gyroid ¢  long-ranged interactions. The special case of vanishing spon-
is eventually suppressed by the lamellar and the cylindricalaneous curvature has been investigated in Ref. 41. It was
phase before it can suppress all other bicontinuous cubifound that for the Canham—Helfrich model, the elastic bulk
phases, the single gyroid Gwith has the most favorable and shear moduli vanish a=0. Small higher order curva-
topology index within its structural typénas a considerable ture terms make these moduli finite, but thermal long-
region of stability as well. wavelength fluctuations with large amplitudes should re-

In summary, we have demonstrated that the complicatechain. An extension of this type of analysis to systems with
phase behavior of bicontinuous cubic phases in ternary syspontaneous curvature has not been attempted so far. Since
tems can be understood in terms of the interplay betweethe spontaneous curvature introduces a new length scale,
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