000011856 001__ 11856
000011856 005__ 20180208214012.0
000011856 0247_ $$2pmid$$apmid:20619874
000011856 0247_ $$2DOI$$a10.1016/j.chemosphere.2010.06.046
000011856 0247_ $$2WOS$$aWOS:000282137700012
000011856 037__ $$aPreJuSER-11856
000011856 041__ $$aeng
000011856 082__ $$a333.7
000011856 084__ $$2WoS$$aEnvironmental Sciences
000011856 1001_ $$0P:(DE-Juel1)131058$$aZhang, J.$$b0$$uFZJ
000011856 245__ $$aEffect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments
000011856 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2010
000011856 300__ $$a1321 - 1327
000011856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011856 3367_ $$2DataCite$$aOutput Types/Journal article
000011856 3367_ $$00$$2EndNote$$aJournal Article
000011856 3367_ $$2BibTeX$$aARTICLE
000011856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011856 3367_ $$2DRIVER$$aarticle
000011856 440_0 $$01228$$aChemosphere$$v80$$x0045-6535$$y11
000011856 500__ $$aRecord converted from VDB: 12.11.2012
000011856 520__ $$aThe effect of organic carbon (OC) and mineral surface on the sorption of polycyclic aromatic hydrocarbon (PAH) pyrene molecule to four Yangtze River sediments was investigated by sorption batch techniques using fluorescence spectroscopy. Pyrene sorption to the mineral fraction was estimated with model sorbent illite, the main clay mineral in Yangtze sediment. The Freundlich model fitted sorption to illite and to sediments was normalized to the specific surface area (SSA). Comparison of the SSA-normalized sorption capacities of illite and sediments suggests a negligible contribution of the pyrene sorption to the mineral fraction. In addition, composite models, such as the linear Langmuir model (LLM) and the linear Polanyi-Dubinin-Manes model (LPDMM) were applied for fitting the sorption of pyrene to the pristine sediments. The application of composite models allows assessing the partition of pyrene into amorphous organic carbon (AOC) and the adsorption in the porous structure of black carbon (BC). The modelling results indicate that the pyrene adsorption to the minor BC components (<0.2%) is more effective than the partition to AOC (0.5-1.3%). Besides the pristine sediments, sediments preheated at 375 degrees C were also studied, in which the AOC fraction was removed during the preheating treatment. The modelling results with LPDMM and Polanyi-Dubinin-Manes model (PDMM) indicate a similar adsorption capacity of BC in pristine and preheated sediments, respectively. The low AOC concentrations in sediments do not diminish the BC micropore filling with pyrene. Simulation of pyrene distribution in the investigated Yangtze River sediments support the importance of the BC fraction in the PAH immobilization under environmental conditions.
000011856 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000011856 588__ $$aDataset connected to Web of Science, Pubmed
000011856 650_2 $$2MeSH$$aAbsorption
000011856 650_2 $$2MeSH$$aAdsorption
000011856 650_2 $$2MeSH$$aCarbon: chemistry
000011856 650_2 $$2MeSH$$aChina
000011856 650_2 $$2MeSH$$aEnvironmental Monitoring
000011856 650_2 $$2MeSH$$aGeologic Sediments: chemistry
000011856 650_2 $$2MeSH$$aMinerals: chemistry
000011856 650_2 $$2MeSH$$aModels, Chemical
000011856 650_2 $$2MeSH$$aPyrenes: analysis
000011856 650_2 $$2MeSH$$aPyrenes: chemistry
000011856 650_2 $$2MeSH$$aRivers: chemistry
000011856 650_2 $$2MeSH$$aWater Pollutants, Chemical: analysis
000011856 650_2 $$2MeSH$$aWater Pollutants, Chemical: chemistry
000011856 650_7 $$00$$2NLM Chemicals$$aMinerals
000011856 650_7 $$00$$2NLM Chemicals$$aPyrenes
000011856 650_7 $$00$$2NLM Chemicals$$aWater Pollutants, Chemical
000011856 650_7 $$0129-00-0$$2NLM Chemicals$$apyrene
000011856 650_7 $$07440-44-0$$2NLM Chemicals$$aCarbon
000011856 650_7 $$2WoSType$$aJ
000011856 65320 $$2Author$$aNonlinear sorption
000011856 65320 $$2Author$$aPyrene
000011856 65320 $$2Author$$aBlack carbon
000011856 65320 $$2Author$$aSediment
000011856 65320 $$2Author$$aPolanyi
000011856 65320 $$2Author$$aFluorescence
000011856 7001_ $$0P:(DE-Juel1)VDB9230$$aSéquaris, J.-M.$$b1$$uFZJ
000011856 7001_ $$0P:(DE-Juel1)VDB1124$$aNarres, H.-D.$$b2$$uFZJ
000011856 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000011856 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b4$$uFZJ
000011856 773__ $$0PERI:(DE-600)1496851-4$$a10.1016/j.chemosphere.2010.06.046$$gVol. 80, p. 1321 - 1327$$p1321 - 1327$$q80<1321 - 1327$$tChemosphere$$v80$$x0045-6535$$y2010
000011856 8567_ $$uhttp://dx.doi.org/10.1016/j.chemosphere.2010.06.046
000011856 909CO $$ooai:juser.fz-juelich.de:11856$$pVDB
000011856 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000011856 9141_ $$y2010
000011856 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011856 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000011856 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000011856 970__ $$aVDB:(DE-Juel1)123230
000011856 980__ $$aVDB
000011856 980__ $$aConvertedRecord
000011856 980__ $$ajournal
000011856 980__ $$aI:(DE-Juel1)IBG-3-20101118
000011856 980__ $$aI:(DE-82)080012_20140620
000011856 980__ $$aUNRESTRICTED
000011856 981__ $$aI:(DE-Juel1)IBG-3-20101118
000011856 981__ $$aI:(DE-Juel1)VDB1346