001     11856
005     20180208214012.0
024 7 _ |2 pmid
|a pmid:20619874
024 7 _ |2 DOI
|a 10.1016/j.chemosphere.2010.06.046
024 7 _ |2 WOS
|a WOS:000282137700012
037 _ _ |a PreJuSER-11856
041 _ _ |a eng
082 _ _ |a 333.7
084 _ _ |2 WoS
|a Environmental Sciences
100 1 _ |a Zhang, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)131058
245 _ _ |a Effect of organic carbon and mineral surface on the pyrene sorption and distribution in Yangtze River sediments
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2010
300 _ _ |a 1321 - 1327
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Chemosphere
|x 0045-6535
|0 1228
|y 11
|v 80
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The effect of organic carbon (OC) and mineral surface on the sorption of polycyclic aromatic hydrocarbon (PAH) pyrene molecule to four Yangtze River sediments was investigated by sorption batch techniques using fluorescence spectroscopy. Pyrene sorption to the mineral fraction was estimated with model sorbent illite, the main clay mineral in Yangtze sediment. The Freundlich model fitted sorption to illite and to sediments was normalized to the specific surface area (SSA). Comparison of the SSA-normalized sorption capacities of illite and sediments suggests a negligible contribution of the pyrene sorption to the mineral fraction. In addition, composite models, such as the linear Langmuir model (LLM) and the linear Polanyi-Dubinin-Manes model (LPDMM) were applied for fitting the sorption of pyrene to the pristine sediments. The application of composite models allows assessing the partition of pyrene into amorphous organic carbon (AOC) and the adsorption in the porous structure of black carbon (BC). The modelling results indicate that the pyrene adsorption to the minor BC components (<0.2%) is more effective than the partition to AOC (0.5-1.3%). Besides the pristine sediments, sediments preheated at 375 degrees C were also studied, in which the AOC fraction was removed during the preheating treatment. The modelling results with LPDMM and Polanyi-Dubinin-Manes model (PDMM) indicate a similar adsorption capacity of BC in pristine and preheated sediments, respectively. The low AOC concentrations in sediments do not diminish the BC micropore filling with pyrene. Simulation of pyrene distribution in the investigated Yangtze River sediments support the importance of the BC fraction in the PAH immobilization under environmental conditions.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Absorption
650 _ 2 |2 MeSH
|a Adsorption
650 _ 2 |2 MeSH
|a Carbon: chemistry
650 _ 2 |2 MeSH
|a China
650 _ 2 |2 MeSH
|a Environmental Monitoring
650 _ 2 |2 MeSH
|a Geologic Sediments: chemistry
650 _ 2 |2 MeSH
|a Minerals: chemistry
650 _ 2 |2 MeSH
|a Models, Chemical
650 _ 2 |2 MeSH
|a Pyrenes: analysis
650 _ 2 |2 MeSH
|a Pyrenes: chemistry
650 _ 2 |2 MeSH
|a Rivers: chemistry
650 _ 2 |2 MeSH
|a Water Pollutants, Chemical: analysis
650 _ 2 |2 MeSH
|a Water Pollutants, Chemical: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Minerals
650 _ 7 |0 0
|2 NLM Chemicals
|a Pyrenes
650 _ 7 |0 0
|2 NLM Chemicals
|a Water Pollutants, Chemical
650 _ 7 |0 129-00-0
|2 NLM Chemicals
|a pyrene
650 _ 7 |0 7440-44-0
|2 NLM Chemicals
|a Carbon
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Nonlinear sorption
653 2 0 |2 Author
|a Pyrene
653 2 0 |2 Author
|a Black carbon
653 2 0 |2 Author
|a Sediment
653 2 0 |2 Author
|a Polanyi
653 2 0 |2 Author
|a Fluorescence
700 1 _ |a Séquaris, J.-M.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB9230
700 1 _ |a Narres, H.-D.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB1124
700 1 _ |a Vereecken, H.
|b 3
|u FZJ
|0 P:(DE-Juel1)129549
700 1 _ |a Klumpp, E.
|b 4
|u FZJ
|0 P:(DE-Juel1)129484
773 _ _ |a 10.1016/j.chemosphere.2010.06.046
|g Vol. 80, p. 1321 - 1327
|p 1321 - 1327
|q 80<1321 - 1327
|0 PERI:(DE-600)1496851-4
|t Chemosphere
|v 80
|y 2010
|x 0045-6535
856 7 _ |u http://dx.doi.org/10.1016/j.chemosphere.2010.06.046
909 C O |o oai:juser.fz-juelich.de:11856
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)123230
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21