000011861 001__ 11861
000011861 005__ 20180208202536.0
000011861 0247_ $$2pmid$$apmid:20886848
000011861 0247_ $$2DOI$$a10.1021/es1010847
000011861 0247_ $$2WOS$$aWOS:000283484000023
000011861 0247_ $$2ISSN$$a0013-936X
000011861 0247_ $$2ISSN$$a1520-5851
000011861 037__ $$aPreJuSER-11861
000011861 041__ $$aeng
000011861 082__ $$a050
000011861 084__ $$2WoS$$aEngineering, Environmental
000011861 084__ $$2WoS$$aEnvironmental Sciences
000011861 1001_ $$0P:(DE-Juel1)131058$$aZhang, J.$$b0$$uFZJ
000011861 245__ $$aPyrene and Phenanthrene Sorption to Model and Natural Geosorbents in Single- and Binary-Solute Systems
000011861 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2010
000011861 300__ $$a8102 - 8107
000011861 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011861 3367_ $$2DataCite$$aOutput Types/Journal article
000011861 3367_ $$00$$2EndNote$$aJournal Article
000011861 3367_ $$2BibTeX$$aARTICLE
000011861 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011861 3367_ $$2DRIVER$$aarticle
000011861 440_0 $$01865$$aEnvironmental Science and Technology$$v44$$x0013-936X$$y21
000011861 500__ $$aRecord converted from VDB: 12.11.2012
000011861 520__ $$aSorption of pyrene and phenanthrene to model (illite and charcoal) and natural (Yangtze sediment) geosorbents were investigated by batch techniques using fluorescence spectroscopy. A higher adsorption of phenanthrene was observed with all sorbents, which is related to the better accessibility of smaller molecules to micropores in the molecular sieve sorbents. In addition, pyrene sorption in binary-solute systems with a constant initial concentration of phenanthrene (0.1 μmol L(-1) or 2 μmol L(-1)) was studied. A 0.1 μmol L(-1) concentration of phenanthrene causes no competitive effect on the pyrene sorption. A 2 μmol L(-1) concentration of phenanthrene significantly suppresses the sorption of pyrene, especially in the low concentration range; nonlinearity of the pyrene sorption isotherms thus decreases. The competitive effect of 2 μmol L(-1) phenanthrene on the pyrene sorption is overestimated by the ideal adsorbed solution theory (IAST) using the fitted single sorption results of both solutes. An adjustment of the IAST application by taking into account the molecular sieve effect is proposed, which notably improves the IAST prediction for the competitive effect.
000011861 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000011861 588__ $$aDataset connected to Web of Science, Pubmed
000011861 650_2 $$2MeSH$$aAbsorption
000011861 650_2 $$2MeSH$$aAdsorption
000011861 650_2 $$2MeSH$$aCharcoal: chemistry
000011861 650_2 $$2MeSH$$aGeologic Sediments: chemistry
000011861 650_2 $$2MeSH$$aMinerals: chemistry
000011861 650_2 $$2MeSH$$aModels, Chemical
000011861 650_2 $$2MeSH$$aPhenanthrenes: chemistry
000011861 650_2 $$2MeSH$$aPyrenes: chemistry
000011861 650_2 $$2MeSH$$aSolutions
000011861 650_2 $$2MeSH$$aSpectrometry, Fluorescence
000011861 650_7 $$00$$2NLM Chemicals$$aMinerals
000011861 650_7 $$00$$2NLM Chemicals$$aPhenanthrenes
000011861 650_7 $$00$$2NLM Chemicals$$aPyrenes
000011861 650_7 $$00$$2NLM Chemicals$$aSolutions
000011861 650_7 $$012173-60-3$$2NLM Chemicals$$aillite
000011861 650_7 $$0129-00-0$$2NLM Chemicals$$apyrene
000011861 650_7 $$016291-96-6$$2NLM Chemicals$$aCharcoal
000011861 650_7 $$085-01-8$$2NLM Chemicals$$aphenanthrene
000011861 650_7 $$2WoSType$$aJ
000011861 7001_ $$0P:(DE-Juel1)VDB9230$$aSéquaris, J.-M.$$b1$$uFZJ
000011861 7001_ $$0P:(DE-Juel1)VDB1124$$aNarres, H.-D.$$b2$$uFZJ
000011861 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b3$$uFZJ
000011861 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b4$$uFZJ
000011861 773__ $$0PERI:(DE-600)1465132-4$$a10.1021/es1010847$$gVol. 44, p. 8102 - 8107$$p8102 - 8107$$q44<8102 - 8107$$tEnvironmental Science & Technology$$v44$$x0013-936X$$y2010
000011861 8567_ $$uhttp://dx.doi.org/10.1021/es1010847
000011861 909CO $$ooai:juser.fz-juelich.de:11861$$pVDB
000011861 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000011861 9141_ $$y2010
000011861 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000011861 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000011861 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000011861 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000011861 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000011861 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000011861 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000011861 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x2
000011861 970__ $$aVDB:(DE-Juel1)123235
000011861 980__ $$aVDB
000011861 980__ $$aConvertedRecord
000011861 980__ $$ajournal
000011861 980__ $$aI:(DE-Juel1)IBG-3-20101118
000011861 980__ $$aI:(DE-82)080012_20140620
000011861 980__ $$aUNRESTRICTED
000011861 981__ $$aI:(DE-Juel1)IBG-3-20101118
000011861 981__ $$aI:(DE-Juel1)VDB1346