000011993 001__ 11993
000011993 005__ 20180208205157.0
000011993 0247_ $$2DOI$$a10.3997/1873-0604.2010037
000011993 0247_ $$2WOS$$aWOS:000285399200013
000011993 037__ $$aPreJuSER-11993
000011993 041__ $$aeng
000011993 082__ $$a550
000011993 084__ $$2WoS$$aGeochemistry & Geophysics
000011993 1001_ $$0P:(DE-HGF)0$$aLavoué, F.$$b0
000011993 245__ $$aElectromagnetic induction calibration using apparent electrical conductivity modelling based on electrical resistivity tomography
000011993 260__ $$aHouten$$bEAGE$$c2010
000011993 300__ $$a553 - 561
000011993 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000011993 3367_ $$2DataCite$$aOutput Types/Journal article
000011993 3367_ $$00$$2EndNote$$aJournal Article
000011993 3367_ $$2BibTeX$$aARTICLE
000011993 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000011993 3367_ $$2DRIVER$$aarticle
000011993 440_0 $$015822$$aNear Surface Geophysics$$v8$$x1569-4445$$y6
000011993 500__ $$aWe acknowledge the support by the SFB/TR 32 'Pattern in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation' funded by the Deutsche Forschungsgemeinschaft (DFG). This project was initiated during a three-month internship of F. Lavoue at the Forschungszentrum Juelich. F. Lavoue acknowledges the support of the Ecole Normale Superieure de Lyon, France. Two anonymous reviewers helped to improve the manuscript.
000011993 520__ $$aElectromagnetic parameters of the subsurface such as electrical conductivity are of great interest for non-destructive determination of soil properties (e.g., clay content) or hydrologic state variables (e.g., soil water content). In the past decade, several non-invasive geophysical methods have been developed to measure subsurface parameters in situ. Among these methods, electromagnetic (EM) induction appears to be the most efficient one that is able to cover large areas in a short time. However, this method currently does not provide absolute values of electrical conductivity due to calibration problems, which hinders a quantitative analysis of the measurement. In this study, we propose to calibrate EM induction measurements with electrical conductivity values measured with electrical resistivity tomography (ERT). EM induction measures an apparent electrical conductivity at the surface, which represents a weighted average of the electrical conductivity distribution over a certain depth range, whereas ERT inversion can provide absolute values for local conductivities as a function of depth. EM induction and ERT measurements were collected along a 120-metre-long transect. To reconstruct the apparent electrical conductivity measured with EM induction, the inverted ERT data were used as input in an electromagnetic forward modelling tool for magnetic dipoles over a horizontally layered medium considering the frequencies and offsets used by the EM induction instruments. Comparison of the calculated and measured apparent electrical conductivities shows very similar trends but a shift in absolute values, which is attributed to system calibration problems. The observed shift can be corrected for by linear regression. This new calibration strategy for EM induction measurements now enables the quantitative mapping of electrical conductivity values over large areas.
000011993 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000011993 588__ $$aDataset connected to Web of Science
000011993 650_7 $$2WoSType$$aJ
000011993 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, J.$$b1$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)VDB85768$$aRings, J.$$b2$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)VDB85547$$aAndré, F.$$b3$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)VDB85548$$aMoghadas, D.$$b4$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b5$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)VDB54976$$aLambot, S.$$b6$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b7$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b8$$uFZJ
000011993 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b9$$uFZJ
000011993 773__ $$0PERI:(DE-600)2247665-9$$a10.3997/1873-0604.2010037$$gp. 553 - 561$$p553 - 561$$q553 - 561$$tNear surface geophysics$$x1569-4445$$y2010
000011993 8567_ $$uhttp://dx.doi.org/10.3997/1873-0604.2010037
000011993 909CO $$ooai:juser.fz-juelich.de:11993$$pVDB
000011993 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000011993 9141_ $$y2010
000011993 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000011993 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000011993 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000011993 970__ $$aVDB:(DE-Juel1)123443
000011993 980__ $$aVDB
000011993 980__ $$aConvertedRecord
000011993 980__ $$ajournal
000011993 980__ $$aI:(DE-Juel1)IBG-3-20101118
000011993 980__ $$aI:(DE-82)080011_20140620
000011993 980__ $$aUNRESTRICTED
000011993 981__ $$aI:(DE-Juel1)IBG-3-20101118
000011993 981__ $$aI:(DE-Juel1)VDB1047