000012002 001__ 12002
000012002 005__ 20210129210551.0
000012002 0247_ $$2pmid$$apmid:21056087
000012002 0247_ $$2DOI$$a10.1016/j.neulet.2010.10.068
000012002 0247_ $$2WOS$$aWOS:000286697400035
000012002 037__ $$aPreJuSER-12002
000012002 041__ $$aeng
000012002 082__ $$a610
000012002 084__ $$2WoS$$aNeurosciences
000012002 1001_ $$0P:(DE-Juel1)131679$$aElmenhorst, D.$$b0$$uFZJ
000012002 245__ $$aAdenosine A(1) receptors in human brain and transfected CHO cells: inhibition of [(3)H]CPFPX binding by adenosine and caffeine
000012002 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000012002 300__ $$a415 - 420
000012002 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012002 3367_ $$2DataCite$$aOutput Types/Journal article
000012002 3367_ $$00$$2EndNote$$aJournal Article
000012002 3367_ $$2BibTeX$$aARTICLE
000012002 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012002 3367_ $$2DRIVER$$aarticle
000012002 440_0 $$04581$$aNeuroscience Letters$$v487$$x0304-3940$$y3
000012002 500__ $$aThis work was supported by the Heinrich Hertz Foundation of the Ministry of Science and Technology, North-Rhine Westfalia, Germany to DE and the German Federal Ministry of Education and Research (Brain Imaging Center West, to DE and AB).
000012002 520__ $$aIn vivo imaging of adenosine function has become feasible with the specific A(1) adenosine receptor ligand [(18)F]CPFPX and positron emission tomography (PET). It is, however, still an open question whether [(18)F]CPFPX is displaceable by endogenous adenosine, which would allow to detect activity-dependent adenosine release in vivo. We used the tritiated analog of [(18)F]CPFPX, [(3)H]CPFPX, to quantify A(1) adenosine receptors (A(1)AR) in grey matter tissue homogenates of four human brains and A(1)AR transfected Chinese hamster ovary cells, respectively. Saturation binding experiments in the presence of a stable GTP analog revealed a dissociation constant (K(D)) of 2.4±0.5nM. The unselective endogenous A(1)AR agonist adenosine and the antagonist caffeine displaced specific [(3)H]CPFPX binding completely at high doses. Concentrations sufficient to inhibit 50% of binding (IC(50)) were 6.9±2.7μM for adenosine and 148±15.4μM for caffeine. Respective inhibition constants (K(i)) were 2.8±0.9μM and 61.4±11.2μM.The present report supports the possibility of studying acute effects of adenosine and caffeine in vivo with [(18)F]CPFPX and PET. Pathophysiological conditions like hypoxia which increase endogenous adenosine concentrations several folds might interfere with in vivo [(18)F]CPFPX binding. Caffeine intake previous to the investigation should be considered as a confounding factor regarding the determination of receptor densities with [(18)F]CPFPX and PET.
000012002 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000012002 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000012002 588__ $$aDataset connected to Web of Science, Pubmed
000012002 650_2 $$2MeSH$$aAdenosine: pharmacokinetics
000012002 650_2 $$2MeSH$$aAnimals
000012002 650_2 $$2MeSH$$aBinding, Competitive
000012002 650_2 $$2MeSH$$aBrain: radionuclide imaging
000012002 650_2 $$2MeSH$$aCHO Cells
000012002 650_2 $$2MeSH$$aCaffeine: pharmacokinetics
000012002 650_2 $$2MeSH$$aCricetinae
000012002 650_2 $$2MeSH$$aCricetulus
000012002 650_2 $$2MeSH$$aHumans
000012002 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000012002 650_2 $$2MeSH$$aRadiopharmaceuticals: pharmacokinetics
000012002 650_2 $$2MeSH$$aReceptor, Adenosine A1: metabolism
000012002 650_2 $$2MeSH$$aTransfection
000012002 650_2 $$2MeSH$$aTritium: diagnostic use
000012002 650_2 $$2MeSH$$aXanthines: pharmacokinetics
000012002 650_7 $$00$$2NLM Chemicals$$a8-cyclopenta-3-(3-fluoropropyl)-1-propylxanthine
000012002 650_7 $$00$$2NLM Chemicals$$aRadiopharmaceuticals
000012002 650_7 $$00$$2NLM Chemicals$$aReceptor, Adenosine A1
000012002 650_7 $$00$$2NLM Chemicals$$aXanthines
000012002 650_7 $$010028-17-8$$2NLM Chemicals$$aTritium
000012002 650_7 $$058-08-2$$2NLM Chemicals$$aCaffeine
000012002 650_7 $$058-61-7$$2NLM Chemicals$$aAdenosine
000012002 650_7 $$2WoSType$$aJ
000012002 65320 $$2Author$$aCompetition
000012002 65320 $$2Author$$aSaturation binding
000012002 65320 $$2Author$$aCPFPX
000012002 65320 $$2Author$$aAdenosine
000012002 65320 $$2Author$$aCaffeine
000012002 65320 $$2Author$$aHuman
000012002 65320 $$2Author$$aBrain
000012002 7001_ $$0P:(DE-HGF)0$$aGaribotto, V.$$b1
000012002 7001_ $$0P:(DE-HGF)0$$aPrescher, A.$$b2
000012002 7001_ $$0P:(DE-Juel1)131672$$aBauer, A.$$b3$$uFZJ
000012002 773__ $$0PERI:(DE-600)1498535-4$$a10.1016/j.neulet.2010.10.068$$gVol. 487, p. 415 - 420$$p415 - 420$$q487<415 - 420$$tNeuroscience letters$$v487$$x0304-3940$$y2011
000012002 8567_ $$uhttp://dx.doi.org/10.1016/j.neulet.2010.10.068
000012002 909CO $$ooai:juser.fz-juelich.de:12002$$pVDB
000012002 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000012002 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000012002 9141_ $$y2011
000012002 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012002 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000012002 970__ $$aVDB:(DE-Juel1)123453
000012002 980__ $$aVDB
000012002 980__ $$aConvertedRecord
000012002 980__ $$ajournal
000012002 980__ $$aI:(DE-Juel1)INM-2-20090406
000012002 980__ $$aUNRESTRICTED