001     12002
005     20210129210551.0
024 7 _ |2 pmid
|a pmid:21056087
024 7 _ |2 DOI
|a 10.1016/j.neulet.2010.10.068
024 7 _ |2 WOS
|a WOS:000286697400035
037 _ _ |a PreJuSER-12002
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
100 1 _ |a Elmenhorst, D.
|b 0
|u FZJ
|0 P:(DE-Juel1)131679
245 _ _ |a Adenosine A(1) receptors in human brain and transfected CHO cells: inhibition of [(3)H]CPFPX binding by adenosine and caffeine
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
300 _ _ |a 415 - 420
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Neuroscience Letters
|x 0304-3940
|0 4581
|y 3
|v 487
500 _ _ |a This work was supported by the Heinrich Hertz Foundation of the Ministry of Science and Technology, North-Rhine Westfalia, Germany to DE and the German Federal Ministry of Education and Research (Brain Imaging Center West, to DE and AB).
520 _ _ |a In vivo imaging of adenosine function has become feasible with the specific A(1) adenosine receptor ligand [(18)F]CPFPX and positron emission tomography (PET). It is, however, still an open question whether [(18)F]CPFPX is displaceable by endogenous adenosine, which would allow to detect activity-dependent adenosine release in vivo. We used the tritiated analog of [(18)F]CPFPX, [(3)H]CPFPX, to quantify A(1) adenosine receptors (A(1)AR) in grey matter tissue homogenates of four human brains and A(1)AR transfected Chinese hamster ovary cells, respectively. Saturation binding experiments in the presence of a stable GTP analog revealed a dissociation constant (K(D)) of 2.4±0.5nM. The unselective endogenous A(1)AR agonist adenosine and the antagonist caffeine displaced specific [(3)H]CPFPX binding completely at high doses. Concentrations sufficient to inhibit 50% of binding (IC(50)) were 6.9±2.7μM for adenosine and 148±15.4μM for caffeine. Respective inhibition constants (K(i)) were 2.8±0.9μM and 61.4±11.2μM.The present report supports the possibility of studying acute effects of adenosine and caffeine in vivo with [(18)F]CPFPX and PET. Pathophysiological conditions like hypoxia which increase endogenous adenosine concentrations several folds might interfere with in vivo [(18)F]CPFPX binding. Caffeine intake previous to the investigation should be considered as a confounding factor regarding the determination of receptor densities with [(18)F]CPFPX and PET.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89571 - Connectivity and Activity (POF2-89571)
|0 G:(DE-HGF)POF2-89571
|c POF2-89571
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adenosine: pharmacokinetics
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Binding, Competitive
650 _ 2 |2 MeSH
|a Brain: radionuclide imaging
650 _ 2 |2 MeSH
|a CHO Cells
650 _ 2 |2 MeSH
|a Caffeine: pharmacokinetics
650 _ 2 |2 MeSH
|a Cricetinae
650 _ 2 |2 MeSH
|a Cricetulus
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Positron-Emission Tomography: methods
650 _ 2 |2 MeSH
|a Radiopharmaceuticals: pharmacokinetics
650 _ 2 |2 MeSH
|a Receptor, Adenosine A1: metabolism
650 _ 2 |2 MeSH
|a Transfection
650 _ 2 |2 MeSH
|a Tritium: diagnostic use
650 _ 2 |2 MeSH
|a Xanthines: pharmacokinetics
650 _ 7 |0 0
|2 NLM Chemicals
|a 8-cyclopenta-3-(3-fluoropropyl)-1-propylxanthine
650 _ 7 |0 0
|2 NLM Chemicals
|a Radiopharmaceuticals
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptor, Adenosine A1
650 _ 7 |0 0
|2 NLM Chemicals
|a Xanthines
650 _ 7 |0 10028-17-8
|2 NLM Chemicals
|a Tritium
650 _ 7 |0 58-08-2
|2 NLM Chemicals
|a Caffeine
650 _ 7 |0 58-61-7
|2 NLM Chemicals
|a Adenosine
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Competition
653 2 0 |2 Author
|a Saturation binding
653 2 0 |2 Author
|a CPFPX
653 2 0 |2 Author
|a Adenosine
653 2 0 |2 Author
|a Caffeine
653 2 0 |2 Author
|a Human
653 2 0 |2 Author
|a Brain
700 1 _ |a Garibotto, V.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Prescher, A.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Bauer, A.
|b 3
|u FZJ
|0 P:(DE-Juel1)131672
773 _ _ |a 10.1016/j.neulet.2010.10.068
|g Vol. 487, p. 415 - 420
|p 415 - 420
|q 487<415 - 420
|0 PERI:(DE-600)1498535-4
|t Neuroscience letters
|v 487
|y 2011
|x 0304-3940
856 7 _ |u http://dx.doi.org/10.1016/j.neulet.2010.10.068
909 C O |o oai:juser.fz-juelich.de:12002
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89571
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INM-2
|l Molekulare Organisation des Gehirns
|g INM
|0 I:(DE-Juel1)INM-2-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)123453
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21