000012019 001__ 12019
000012019 005__ 20230426083021.0
000012019 0247_ $$2DOI$$a10.1103/PhysRevB.82.205115
000012019 0247_ $$2WOS$$aWOS:000284258300003
000012019 0247_ $$2Handle$$a2128/10966
000012019 037__ $$aPreJuSER-12019
000012019 041__ $$aeng
000012019 082__ $$a530
000012019 084__ $$2WoS$$aPhysics, Condensed Matter
000012019 1001_ $$0P:(DE-HGF)0$$aOno, T.$$b0
000012019 245__ $$aReal-space electronic structure calculations with full-potential all-electron precision for transition metals
000012019 260__ $$aCollege Park, Md.$$bAPS$$c2010
000012019 300__ $$a205115
000012019 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012019 3367_ $$2DataCite$$aOutput Types/Journal article
000012019 3367_ $$00$$2EndNote$$aJournal Article
000012019 3367_ $$2BibTeX$$aARTICLE
000012019 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012019 3367_ $$2DRIVER$$aarticle
000012019 440_0 $$04919$$aPhysical Review B$$v82$$x1098-0121$$y20
000012019 500__ $$aThe authors would like to thank Kikuji Hirose and Yoshitada Morikawa of Osaka University and Ionut Tranca and Daniel Wortmann of Forschungszentrum Julich for fruitful discussion. This research was partially supported by Strategic Japanese-German Cooperative Program from Japan Science and Technology Agency and Deutsche Forschungsgemeinschaft, by a Grant-in-Aid for Young Scientists (B) (Grant No. 20710078), and also by a Grant-in-Aid for the Global COE "Center of Excellence for Atomically Controlled Fabrication Technology" from the Ministry of Education, Culture, Sports, Science and Technology, Japan. T.O. thanks the Alexander von Humboldt Foundation and N.A. and P.B. thank the Japan Society for the Promotion of Science for the financial support. The numerical calculation was carried out using the computer facilities of the Institute for Solid State Physics at the University of Tokyo, the Research Center for Computational Science at the National Institute of Natural Science, Center for Computational Sciences at University of Tsukuba, the Information Synergy Center at Tohoku University, and Supercomputing Centre at Forschungszentrum Julich.
000012019 520__ $$aWe have developed an efficient computational scheme utilizing the real-space finite-difference formalism and the projector augmented-wave (PAW) method to perform precise first-principles electronic-structure simulations based on the density-functional theory for systems containing transition metals with a modest computational effort. By combining the advantages of the time-saving double-grid technique and the Fourier-filtering procedure for the projectors of pseudopotentials, we can overcome the egg box effect in the computations even for first-row elements and transition metals, which is a problem of the real-space finite-difference formalism. In order to demonstrate the potential power in terms of precision and applicability of the present scheme, we have carried out simulations to examine several bulk properties and structural energy differences between different bulk phases of transition metals and have obtained excellent agreement with the results of other precise first-principles methods such as a plane-wave-based PAW method and an all-electron full-potential linearized augmented plane-wave (FLAPW) method.
000012019 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000012019 542__ $$2Crossref$$i2010-11-16$$uhttp://link.aps.org/licenses/aps-default-license
000012019 588__ $$aDataset connected to Web of Science
000012019 650_7 $$2WoSType$$aJ
000012019 7001_ $$0P:(DE-HGF)0$$aHeide, M.$$b1
000012019 7001_ $$0P:(DE-Juel1)130513$$aAtodiresei, N.$$b2$$uFZJ
000012019 7001_ $$0P:(DE-Juel1)156619$$aBaumeister, P.$$b3$$uFZJ
000012019 7001_ $$0P:(DE-Juel1)VDB87430$$aTsukamoto, S.$$b4$$uFZJ
000012019 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b5$$uFZJ
000012019 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.82.205115$$bAmerican Physical Society (APS)$$d2010-11-16$$n20$$p205115$$tPhysical Review B$$v82$$x1098-0121$$y2010
000012019 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.82.205115$$gVol. 82, p. 205115$$n20$$p205115$$q82<205115$$tPhysical review / B$$v82$$x1098-0121$$y2010
000012019 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.82.205115
000012019 8564_ $$uhttps://juser.fz-juelich.de/record/12019/files/PhysRevB.82.205115.pdf$$yOpenAccess
000012019 8564_ $$uhttps://juser.fz-juelich.de/record/12019/files/PhysRevB.82.205115.gif?subformat=icon$$xicon$$yOpenAccess
000012019 8564_ $$uhttps://juser.fz-juelich.de/record/12019/files/PhysRevB.82.205115.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012019 8564_ $$uhttps://juser.fz-juelich.de/record/12019/files/PhysRevB.82.205115.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000012019 8564_ $$uhttps://juser.fz-juelich.de/record/12019/files/PhysRevB.82.205115.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000012019 909CO $$ooai:juser.fz-juelich.de:12019$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000012019 9141_ $$y2010
000012019 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000012019 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012019 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012019 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000012019 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000012019 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000012019 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000012019 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000012019 970__ $$aVDB:(DE-Juel1)123487
000012019 9801_ $$aFullTexts
000012019 980__ $$aVDB
000012019 980__ $$aConvertedRecord
000012019 980__ $$ajournal
000012019 980__ $$aI:(DE-Juel1)PGI-1-20110106
000012019 980__ $$aI:(DE-Juel1)IAS-1-20090406
000012019 980__ $$aI:(DE-82)080009_20140620
000012019 980__ $$aI:(DE-Juel1)VDB1045
000012019 980__ $$aUNRESTRICTED
000012019 981__ $$aI:(DE-Juel1)PGI-1-20110106
000012019 981__ $$aI:(DE-Juel1)IAS-1-20090406
000012019 981__ $$aI:(DE-Juel1)VDB1045
000012019 981__ $$aI:(DE-Juel1)VDB881
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.136.B864
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.72.1041
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1240
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.11355
000012019 999C5 $$1K. Hirose$$2Crossref$$9-- missing cx lookup --$$a10.1142/9781860946530$$y2005
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.39.5819
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0965-0393/13/3/R01
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.71.1808
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.43.1494
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.26.4199
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.1993
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.R5471
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.14362
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.5016
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.085115
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.R2229
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1006/jcph.1998.6138
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcc.20008
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.71.1085
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.195315
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.033403
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0022-3719/12/21/009
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.41.7892
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0031-8914(47)90013-X
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.94.1111
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.50.17953
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.71.035109
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1139/p80-159
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.43.947
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.44.13063
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.1758
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3026506
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.48.1425
000012019 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.033405