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Mapping the magnetic exchange interactions from model Hamiltonian to density-functional theory is a
crucial step in multiscale modeling calculations. Considering the usual magnetic force theorem but with
arbitrary rotational angles of the spin moments, a spurious anisotropy in the standard mapping procedure is
shown to occur provided by bilinear like contributions of high-order spin interactions. The evaluation of this
anisotropy gives a hint on the strength of nonbilinear terms characterizing the system under investigation.
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Multiscale modeling approaches are extremely important
for describing huge magnetic systems, e.g., at the microme-
ter scale which would be impossible with only density-
functional theory �DFT�. In magnetism, usually the multi-
scale approach is performed after mapping the magnetic
exchange interactions �MEI� of a classical Heisenberg model
to the DFT counterparts. This is a crucial task which can lead
to wrong results if not done carefully. The simple model is
described by

H = −
1

2�
i�j

Jije�i · e� j , �1�

where Jij describes the pairwise �two-spin� MEI between
spins at lattice sites i and j while e�i�1,� ,�� defines the di-
rection of the local moment M� i. Sometimes, higher-order
terms such as the four-spin or the biquadratic MEI are intro-
duced in the previous Hamiltonian for a better mapping of
the DFT results.1,2

Once the MEI extracted, the investigation of magnetism
of several type of systems can be performed going from
molecules,3 transition metals alloys,4,5 and surfaces,6,7 di-
luted magnetic semiconductors,8,9 to clusters,10–13 and even
for strongly correlated systems.14 Thermodynamical proper-
ties are then easily accessible such as Curie temperatures,
specific heat or magnetic excitation spectra and spin waves
stiffness in multidimensional systems.

An elegant method to extract the MEI is based on a
Greens-function technique which has been derived 20 years
ago by Liechtenstein et al.15 �noted in the text LKAG�. In-
stead of calculating several magnetic configurations, this
method, based on the magnetic force theorem �MFT�,16,17

allows the evaluation of the MEI from one collinear configu-
ration which is usually ferromagnetic. Computationally, this
method is thus very attractive.

Assuming infinitesimal rotation angles of the magnetic
moments �limit of infinite magnon wavelength� is necessary
to get the final LKAG formula for the MEI. However, one
should note that this formalism is used for arbitrary big ro-
tation angles �finite magnon wavelength� as well. Thus,
many improvements of the formalism have been proposed
recently: Bruno18 proposed a renormalized MFT using the

constrained DFT �Ref. 19� leading to unrealistic high local
density approximation �LDA� Curie temperature �Tc� for fcc
Ni. The same effect has been observed using the proposal of
Antropov.20 Katsnelson and Lichtenstein21 proposed in their
recent publication a reconciliation between the old
formalism15 and the new renormalized theories.18,20 They
have shown that the improvements proposed are well suited
for the static response function while the LKAG formalism is
optimal for calculations of the magnon spectra. A more rig-
orous approach is based on the calculation of dynamical
transverse susceptibility22–28 which is computationally more
involved.

In the present contribution, we revisit the LKAG formal-
ism and scrutinize one of the first assumptions assumed in
the mapping procedure which has not been discussed yet. We
demonstrate that an interesting issue occurs in the original
mapping and thus in the majority of improvements as well.
Avoiding the long wave or the infinitesimal rotation angle
approximation, an anisotropy of the DFT MEI is obtained.
This inconsistency is interpreted as a contribution to the DFT
mapped part from high-order MEI, such as the four-spin in-
teractions but behaving like bilinear terms.

In our demonstration we follow the usual mapping proce-
dure with three steps to consider: �i� definition of the classi-
cal Heisenberg model, �ii� evaluation of the DFT counterpart,
�iii� mapping and extraction of the MEI.

Classical Heisenberg model for pair interactions. As done
in LKAG, we consider Eq. �1� and determine the rotation
energy of two-spin moments at sites i and j, which are ini-
tially ferromagnetically aligned. Contrary to LKAG, here we
assume different rotation angles for i and j. First, we deter-
mine the energy difference between this new magnetic state
and the ferromagnetic one

�Ei+j = −�
n�i,

n�j

Jin�ei
z − 1� −�

m�i,

m�j

Jmj�ej
z − 1� − Jij�e�i · e� j − 1� , �2�

where the z axis refers to the quantization axis of the ferro-
magnetic environment and n and m to environmental atoms.
Second since we are interested in the MEI between atom i
and atom j we subtract the interaction energies ��Ei and
�Ej� of each atom with the environment. This is obtained
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after rotating only one of the two atoms, by the same angle
as assumed for �Ei+j.

�Ei = − �
n�i,

n�j

Jin�ei
z − 1� − Jij�ei

z − 1� . �3�

The final quantity which depends only on the MEI is thus
given by

�E�i,j� = �Ei+j − �Ei − �Ej , �4�

�E�i,j� = − Jij�1 + cos��i�cos�� j� − cos��i� − cos�� j�

+ sin��i�sin�� j�cos��i − � j�� �5�

if polar and azimuthal angles ��i ,�i� and �� j ,� j� are intro-
duced. In their work, LKAG cant the two spins by an equal
angle � but in opposite directions, i.e., by setting �i=� j =�
when evaluating �Ei and �Ej while they cant the two spins
by � /2 and consider �i−� j =� when evaluating �Ei+j. One
then obtains �E�i,j�=−Jij�1−cos���� in agreement with
LKAG. �Note that in the DFT counterpart expression LKAG
use an angle � /2 for �Ei and �Ej instead of �.� For small
rotations �i, � j Eq. �5� simplifies to

�E�i,j� � − Jij�i� j cos��i − � j� . �6�

Magnetic pair interaction from DFT. This difference is
directly given by

�E�i,j� = �EF

dE�E − EF��n�i,j��E� = − �EF

dE�N�i,j��E� �7�

with �N�i,j��E� being the corresponding change in the inte-
grated density of states �IDOS� and EF being the Fermi en-
ergy

�N�i,j��E� = �Ni+j�E� − �Ni�E� − �Nj�E� . �8�

Hence, �Ni+j�E� is the change in the IDOS when both atoms
i and j have their moments rotated. �Ni�E� and �Nj�E� are
changes in the IDOS when only one moment is rotated.
�N�i,j��E� is the change in the IDOS corresponding to the
interaction energy between the moments i and j as expressed
in Eq. �5�.

Now, we can calculate every term in Eq. �8� using
multiple-scattering theory and take advantage of the Lloyd’s
formula29,30

�N�E� = −
1

�
Im TrnLs ln�1 − G�E��V� , �9�

where the trace Tr is taken over the site �n�, orbital momen-
tum, and spin indices. Knowing the Greens function G of the
initial system describing the collinear magnetic state, this
formula allows an exact determination of the change in the
IDOS just by knowing the potential difference �V induced
by the rotation of a magnetic moment.

When rotating the magnetic moments of two atoms i and
j, the interactive part of the integrated density of states ac-
cording to Eq. �8� is given by

�N�i,j��E� = −
1

�
Im TrnLs�ln�1 − G�E���Vi + �V j��

− ln��1 − G�E��Vi��1 − G�E��V j�	� .

After taking the trace over n, the formulation giving the
IDOS can be simplified into

�N�i,j� = −
1

�
Im TrLs ln
1 −

�tiGij�t jG ji

�1 − �tiGii��1 − �t jG j j�
� , �10�

which is equivalent to Eq. B1 from LKAG. Here we dropped
out the argument E for reasons of clarity and the scattering t
matrices �ti and �t j describe all scattering processes at the
isolated atoms i and j. �t is defined by �V / �1−G�V�.

The term G ji�tiGij�t j describes the scattering of an elec-
tron at a site j, the propagation to the site i from which it is
scattered back to site j. It is a second-order process which is
expected to be very small compared to one. A similar argu-
ment can be used for the denominator. Indeed, if one makes
a Taylor expansion of the denominator, terms like
G�tG�tG�t would appear but are third-order processes and
thus are expected to be much smaller than one.

After a first-order expansion of Eq. �10� we obtain

�N�i,j� �
1

�
Im TrLs G ji�tiGij�t j . �11�

The previous equation is expressed in the global spin
frame of reference, i.e., the t-matrices have nondiagonal el-
ements which is not the case of the magnetically collinear
host Greens function G. The MFT states that the spin mo-
ment does not change upon rotation, meaning that the
t-matrix within the local spin frame of reference of each
atom does not change. Once calculated in the initial collinear
state, the t-matrix is easily obtained

tn
global�E� =

1

2
�tsum

local�E�1 + tdif f
local�E�Un�zUn

†� �12�

with U being a rotation matrix defined as following:

U = 
cos��/2�e−�i/2�� − sin��/2�e−�i/2��

sin��/2�e�i/2�� cos��/2�e�i/2�� � �13�

and tsum
local and tdif f

local are equal to, respectively, t↑
local+ t↓

local and
t↑
local− t↓

local. From the new t-matrix we subtract the initial one
needed in Eq. �11�

�ti
global�E� =

1

2
�tdif f

i �E�
cos��i� − 1 sin��i�e−i�i

sin��i�ei�i − cos��i� + 1
� ,

�14�

which is inserted in Eq. �11� leading to

�N�i,j� �
1

4�
Im TrL��A + C��cos��i� − 1��cos�� j� − 1�

+ 2B sin��i�sin�� j�cos��i − � j�� �15�

after taking the trace over the spins with

A = G↑
ij�tdif f

j G↑
ji�tdif f

i , B = G↑
ij�tdif f

j G↓
ji�tdif f

i ,

SAMIR LOUNIS AND PETER H. DEDERICHS PHYSICAL REVIEW B 82, 180404�R� �2010�

RAPID COMMUNICATIONS

180404-2



C = G↓
ij�tdif f

j G↓
ji�tdif f

i . �16�

Mapping. Thus, the energy difference is given by

�E�i,j� = − J1�1 + cos��i�cos�� j� − cos��i� − cos�� j��

− J2 sin��i�sin�� j�cos��i − � j� , �17�

where J1= 1
4� Im TrL �EFdE�A+C� and J2= 1

4� Im TrL
�EFdE2B. This DFT expression is incompatible with expres-
sion �5� calculated from the Heisenberg model since two
parameters J1 and J2 appear. Note that LKAG give only the
expression for J2, which is also the expression used in the
literature. However, it is only the correct expression for small
angles �i, � j since J1 varies as �i

2� j
2. We face here an impor-

tant dilemma in determining the MEI, which, as we will
show, results from higher spin interactions automatically in-
cluded in the second-order DFT approach.

Let us evaluate the difference between the two terms

J1 − J2 =
1

4�
Im TrL �EF

dE�G↑
ij − G↓

ij��tdif f
j �G↑

ji − G↓
ji��tdif f

i .

�18�

Since agreement with the Heisenberg model is only obtained,
if J2=J1 or A+C=2B, the difference J1−J2 vanishes only if
G↑=G↓, i.e., for a nonmagnetic reference system. This means
that any magnetic system would lead to two possible values
for the MEI. It is true that for magnetic excitations with tiny
rotation angles or for what is called the long-wavelength ap-
proximation, one gets rid off the first term in Eq. �17� but the
error grows like �J1−J2��cos��i�−1��cos�� j�−1�. If the de-
sired excited magnetic state is close to high values of the
rotation angle then both terms J1 and J2 have to be consid-
ered.

Using the full-potential Korringa-Kohn-Rostoker Greens-
function method31 within the LDA 32 or the generalized gra-
dient approximation �GGA�,33 we evaluated these terms for
usual bulk systems: Ni and Fe �see Fig. 1� and found that J1
and J2 are, on one hand, relatively similar for Ni since it has

very small magnetic moments �0.61 �B�. On the other hand,
Fe bulk is characterized by a stronger discrepancy due to its
high bulk magnetic moments �2.3 �B�.

In order to grasp some insight on the first term J1 we
propose to consider from the model Hamiltonian side terms
beyond the Heisenberg model which are expected to be im-
plicitly included in the DFT counterpart. The additional
terms can be obtained from a perturbation expansion of the
Hubbard model.1,34 The first terms which have been added
are the four-spin interactions, H4−spin=−�m�n�p�q
Kmnpq��e�me�n��e�pe�q�+ �e�ne�p��e�qe�m�+ �e�me�p��e�ne�q�� /3. Calculat-
ing the energy difference �Eq. �3�� due to the rotation of the
atomic moments i and j leads to following further terms,

Ei,j
four-spin = − K�1 + cos��i�cos�� j� − cos��i� − cos�� j��

−
K

3
�sin��i�sin�� j�cos��i − � j�� �19�

with

K = �
p�q

p�i,j

q�i,j

Kijpq.

Obviously, one notices that the four-spin interactions with
the uncanted environment spins behave for the ij pair like a
bilinear term since only the moments i and j are canted. It is
interesting to note that adding this term to the Heisenberg
model brings an imbalance between the term proportional to
the sin function and the one proportional to cos. We conclude
that this mechanism is behind the observed anisotropy in Eq.
�17�. If we restrict ourself to the four-spin interactions only,
the difference J1−J2 would be given by 2K /3 that conse-
quently would lead to a renormalization of Jij from J2 to
J2+

J2−J1

2 that we represented as Jnew in Fig. 1. This final
result is without any doubt subject to modification as soon as
higher order terms are included in the model Hamiltonian.
The extraction of the exact MEI is thus a rather difficult task.
As mentioned previously, since the moment of Fe is higher
than the one of Ni, the discrepancy between the renormalized
Jij and J2 is strongest for Fe �Fig. 1�.

We exemplify the effect of such corrections by evaluating
the new Curie temperatures �Tc� by Monte Carlo simulations.
The extracted temperatures are not expected to be correct but
are meant as illustrative examples for the effect of renormal-
izing the MEI. A major result shown in Table I is the large
increase in Tc with the new values of the MEI for Ni, Co, and
Fe. The difference between the old and new temperature gets

1 1.5 2 2.5 3

R
ij
/a

-1

0

1

2

3

4

5

J ij
(m

eV
)

J
2

J
new

1 2 3 4 5
R

ij
/a

0

10

20

30

1 1.5 2 2.5 3
-2
-1
0
1
2
3
4
5

A
B

1 2 3 4 5

-40

-20

0

20

(a)

(b)

(c)

(d)

Ni Fe

FIG. 1. �Color online� The MEI J2 �circles� and Jnew=J2+
J2−J1

2
�triangles� calculated for bulk fcc Ni �a� and bcc Fe �c� with respect
to the distance R with a being the lattice parameter. In the insets are
plotted the contribution of the terms A and B for Ni �b� and Fe �d�.
For reasons given below, the discrepancy between J2 and Jnew is
much stronger for Fe compared to Ni.

TABLE I. The Curie temperature �in kelvin� for Ni, Fe, and Co
calculated with the LKAG formalism and with taking into account
the four-spin interactions.

Tc �K� Expt. J2 J2+
�J2−J1�

2

Ni�fcc-LDA� 631 374 458

Co�fcc-GGA� 1388–1398 1520 1949

Fe�bcc-LDA� 1045 1086 2062

Fe�bcc-GGA� 1165 2791
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stronger when increasing the magnetic moment of the host.
Surprisingly, similar behaviors have been obtained by
Katsnelson and Lichtenstein21 when comparing the tempera-
tures obtained using the renormalized method of Bruno18

with those of the old LKAG method. Obviously, the values
obtained for Fe are too high and probably, one has to include
higher-order terms in the model Hamiltonian to lower Tc.
The values obtained with only J2 are probably sufficient for
Fe due to a cancellation of errors that were described by
Katsnelson and Lichtenstein.21

By concluding we stress that the LKAG formula for Jij
describes correctly the MEI for small canting angles �. In
this case the spin-dependent t-matrices �t of Eq. �14� vary
linearly in � so that �E�i,j� is proportional to Jij�

2, where � is
an effective canting angle. All higher order interactions like
Kijkl between four or six slightly canted spins therefore scale
as �4 or �6. As demonstrated, these Jij calculated by the
LKAG formula include implicitly all multispin interactions
of the canted �i , j� moments with the uncanted environment

atoms. It is for these reasons, that the calculated long-wave
magnons and the spin stiffness constants agree very well
with experiment. However, for larger transversal fluctuations
of the moments the bilinear interaction Jij is no longer suf-
ficient, and higher order spin interactions such as the four-
spin interaction and the biquadratic coupling become impor-
tant and have to be included explicitly in calculating Tc and
related thermodynamic properties. Since the spin splitting
and �t scale with the local moments M, these multispin in-
teractions scale as M4 or higher and are thus more important
for systems with large moments. In the Rapid Communica-
tion, we have demonstrated the importance of four-spin in-
teractions in Tc calculations for Fe, Co, and Ni based on the
LKAG formula for larger canting angles.
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