001     12048
005     20230426083021.0
024 7 _ |a 10.1103/PhysRevB.82.045107
|2 DOI
024 7 _ |a WOS:000279775900003
|2 WOS
024 7 _ |a 2128/10963
|2 Handle
037 _ _ |a PreJuSER-12048
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Ishida, H.
|b 0
245 _ _ |a Cluster dynamical mean-field study of strongly correlated heterostructures: Correlation-induced reduction of proximity effect
260 _ _ |a College Park, Md.
|b APS
|c 2010
300 _ _ |a 045107
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 82
|x 1098-0121
|y 4
500 _ _ |a The work of H. I. was supported by the Grand-in-Aid for Scientific Research (Grant No. 20540191) from the Japan Society for Promotion of Science.
520 _ _ |a We present a dynamical mean-field theory (DMFT) study of strongly correlated heterostructures. In contrast to previous DMFT work on multilayered systems, which was mainly based on the single-site approximation, we investigate the role of interplanar Coulomb correlations by using cellular DMFT. Accordingly, the self-energy matrix exhibits off-diagonal components in the layer index. As a model system we consider the single-band Hubbard model in a thin film geometry. The films can be either free standing or sandwiched between semi-infinite metallic leads. For isolated thin films, it is shown that the metal-insulator phase transition occurs either via a conventional mechanism, with a diverging imaginary part of the local self-energy, or via another one involving a discontinuous change of the real part of the off-diagonal self-energy. When the film is connected to metallic leads, the former phase transition disappears due to the normal-metal proximity effects, whereas the latter survives and significantly influences the electronic properties of the thin film. The leakage of metallic states into the Mott gap of the correlated film is greatly reduced compared to single-site DMFT calculations.
536 _ _ |0 G:(DE-Juel1)FUEK414
|2 G:(DE-HGF)
|a Kondensierte Materie
|c P54
|x 0
542 _ _ |i 2010-07-12
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB941
|a Liebsch, A.
|b 1
|u FZJ
773 1 8 |a 10.1103/physrevb.82.045107
|b American Physical Society (APS)
|d 2010-07-12
|n 4
|p 045107
|3 journal-article
|2 Crossref
|t Physical Review B
|v 82
|y 2010
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.82.045107
|g Vol. 82, p. 045107
|0 PERI:(DE-600)2844160-6
|n 4
|q 82<045107
|p 045107
|t Physical review / B
|v 82
|y 2010
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.82.045107
856 4 _ |u https://juser.fz-juelich.de/record/12048/files/PhysRevB.82.045107.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/12048/files/PhysRevB.82.045107.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/12048/files/PhysRevB.82.045107.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/12048/files/PhysRevB.82.045107.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/12048/files/PhysRevB.82.045107.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:12048
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK414
|a DE-HGF
|b Materie
|k P54
|l Kondensierte Materie
|v Kondensierte Materie
|x 0
|z entfällt bis 2009
914 1 _ |y 2010
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)VDB781
|d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|x 0
970 _ _ |a VDB:(DE-Juel1)123536
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1038/nature02308
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1092508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1098867
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1151094
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1146006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature00977
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.057601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.256803
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.045122
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.075415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.2549
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.7834
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.165114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.165408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.68.13
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00018730701619647
|9 -- missing cx lookup --
|1 K. Held
|p 829 -
|2 Crossref
|t Adv. Phys.
|v 56
|y 2007
999 C 5 |a 10.1103/RevModPhys.78.865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02450
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.241104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.235108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.195342
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.035133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.125114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.116402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.075106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.075339
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.066802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.064532
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/12/10/309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/20/26/264002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.266403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.195427
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.195117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.045130
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.186401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.165114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.045108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.186403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0010-4655(01)00173-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(71)90115-4
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.72.1545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.045125
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 W. H. Press
|y 1986
|2 Crossref
|t Numerical Recipes in Fortran 77
|o W. H. Press Numerical Recipes in Fortran 77 1986
999 C 5 |a 10.1007/978-1-4757-5592-3
|1 J. Stoer
|2 Crossref
|9 -- missing cx lookup --
|y 1980
999 C 5 |a 10.1103/PhysRevLett.101.116807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9780511805776
|1 S. Datta
|2 Crossref
|9 -- missing cx lookup --
|y 1995
999 C 5 |a 10.1103/PhysRevLett.68.2512
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21