000012050 001__ 12050
000012050 005__ 20230426083021.0
000012050 0247_ $$2DOI$$a10.1103/PhysRevB.81.235133
000012050 0247_ $$2WOS$$aWOS:000279335400001
000012050 0247_ $$2Handle$$a2128/10961
000012050 037__ $$aPreJuSER-12050
000012050 041__ $$aeng
000012050 082__ $$a530
000012050 084__ $$2WoS$$aPhysics, Condensed Matter
000012050 1001_ $$0P:(DE-Juel1)VDB941$$aLiebsch, A.$$b0$$uFZJ
000012050 245__ $$aSpectral weight of doping-induced states in the two-dimensional Hubbard model
000012050 260__ $$aCollege Park, Md.$$bAPS$$c2010
000012050 300__ $$a235133
000012050 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012050 3367_ $$2DataCite$$aOutput Types/Journal article
000012050 3367_ $$00$$2EndNote$$aJournal Article
000012050 3367_ $$2BibTeX$$aARTICLE
000012050 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012050 3367_ $$2DRIVER$$aarticle
000012050 440_0 $$04919$$aPhysical Review B$$v81$$x1098-0121
000012050 500__ $$aRecord converted from VDB: 12.11.2012
000012050 520__ $$aThe spectral weight of states induced in the Mott gap via hole doping in the two-dimensional Hubbard model is studied within cluster dynamical mean-field theory combined with finite-temperature exact diagonalization. If the cutoff energy is chosen to lie just below the upper Hubbard band, the integrated weight per spin is shown to satisfy W+(delta) >= delta (delta denotes the total number of holes), in agreement with model predictions by Eskes et al. [Phys. Rev. Lett. 67, 1035 (1991)]. However, if the cutoff energy is chosen to lie in the range of the pseudogap, W+(delta) remains much smaller than delta and approximately saturates near delta approximate to 0.2, ..., 0.3. The analysis of recent x-ray absorption spectroscopy data therefore depends crucially on the appropriate definition of the integration window.
000012050 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000012050 542__ $$2Crossref$$i2010-06-29$$uhttp://link.aps.org/licenses/aps-default-license
000012050 588__ $$aDataset connected to Web of Science
000012050 650_7 $$2WoSType$$aJ
000012050 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.81.235133$$bAmerican Physical Society (APS)$$d2010-06-29$$n23$$p235133$$tPhysical Review B$$v81$$x1098-0121$$y2010
000012050 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.81.235133$$gVol. 81, p. 235133$$n23$$p235133$$q81<235133$$tPhysical review / B$$v81$$x1098-0121$$y2010
000012050 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.81.235133
000012050 8564_ $$uhttps://juser.fz-juelich.de/record/12050/files/PhysRevB.81.235133.pdf$$yOpenAccess
000012050 8564_ $$uhttps://juser.fz-juelich.de/record/12050/files/PhysRevB.81.235133.gif?subformat=icon$$xicon$$yOpenAccess
000012050 8564_ $$uhttps://juser.fz-juelich.de/record/12050/files/PhysRevB.81.235133.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012050 8564_ $$uhttps://juser.fz-juelich.de/record/12050/files/PhysRevB.81.235133.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000012050 8564_ $$uhttps://juser.fz-juelich.de/record/12050/files/PhysRevB.81.235133.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000012050 909CO $$ooai:juser.fz-juelich.de:12050$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000012050 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000012050 9141_ $$y2010
000012050 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000012050 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012050 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012050 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000012050 970__ $$aVDB:(DE-Juel1)123538
000012050 980__ $$aVDB
000012050 980__ $$aConvertedRecord
000012050 980__ $$ajournal
000012050 980__ $$aI:(DE-Juel1)PGI-1-20110106
000012050 980__ $$aUNRESTRICTED
000012050 9801_ $$aFullTexts
000012050 981__ $$aI:(DE-Juel1)PGI-1-20110106
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.67.1035
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.48.3916
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.087402
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R7475
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2001-00557-x
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.195130
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.13
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.186401
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.165126
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.056404
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.2543
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.8529
000012050 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.094522