TY - JOUR
AU - Liebsch, A.
TI - Spectral weight of doping-induced states in the two-dimensional Hubbard model
JO - Physical review / B
VL - 81
IS - 23
SN - 1098-0121
CY - College Park, Md.
PB - APS
M1 - PreJuSER-12050
SP - 235133
PY - 2010
N1 - Record converted from VDB: 12.11.2012
AB - The spectral weight of states induced in the Mott gap via hole doping in the two-dimensional Hubbard model is studied within cluster dynamical mean-field theory combined with finite-temperature exact diagonalization. If the cutoff energy is chosen to lie just below the upper Hubbard band, the integrated weight per spin is shown to satisfy W+(delta) >= delta (delta denotes the total number of holes), in agreement with model predictions by Eskes et al. [Phys. Rev. Lett. 67, 1035 (1991)]. However, if the cutoff energy is chosen to lie in the range of the pseudogap, W+(delta) remains much smaller than delta and approximately saturates near delta approximate to 0.2, ..., 0.3. The analysis of recent x-ray absorption spectroscopy data therefore depends crucially on the appropriate definition of the integration window.
KW - J (WoSType)
LB - PUB:(DE-HGF)16
UR - <Go to ISI:>//WOS:000279335400001
DO - DOI:10.1103/PhysRevB.81.235133
UR - https://juser.fz-juelich.de/record/12050
ER -