001     12071
005     20180208214738.0
024 7 _ |2 DOI
|a 10.1016/j.ultramic.2010.05.003
024 7 _ |2 WOS
|a WOS:000283399100001
037 _ _ |a PreJuSER-12071
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Microscopy
100 1 _ |0 P:(DE-HGF)0
|a Ruh, E.
|b 0
245 _ _ |a Investigation of the local Ge concentration in Si/SiGe nanostructures by convergent-beam electron diffraction
260 _ _ |a Amsterdam
|b Elsevier Science
|c 2010
300 _ _ |a 1255 - 1266
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5874
|a Ultramicroscopy
|v 110
|x 0304-3991
|y 10
500 _ _ |a We kindly acknowledge fruitful discussions with Karsten Tillmann, FZ Julich, Hans Sigg, PSI and Rene Monnier, ETHZ. Financial support by the Swiss National Science Foundation is gratefully acknowledged (Project number 20021-103929).
520 _ _ |a SiGe multi quantum well structures were investigated by convergent-beam electron diffraction (CBED) measurements. Detailed layer characterizations were performed by acquiring series of bright field CBED patterns in the form of a line scan across the nanostructures in scanning transmission electron microscopy (STEM) mode. From the higher order Laue zone (HOLZ) lines the local lattice parameters were deduced. The Ge concentration corresponding to these lattice parameters was determined by means of the elasticity theory. In this work it is shown that the lattice constants can be determined locally with an accuracy of about +/- 0.001 to +/- 0.003 angstrom which leads to an accuracy of the corresponding Ge concentration of about 1-2%. The characteristics of the focused electron probe and its influence on the experimental data were used for an estimation of the spatial resolution of the CBED method. For comparison, experimental values regarding the spatial resolution were determined by investigating the abrupt interface between Si(1 1 1) and AlN(0 0 0 1). (C) 2010 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a CBED
653 2 0 |2 Author
|a SiGe
653 2 0 |2 Author
|a Multi quantum well
653 2 0 |2 Author
|a HOLZ line
653 2 0 |2 Author
|a Thin foil relaxation
653 2 0 |2 Author
|a Local concentration
700 1 _ |0 P:(DE-HGF)0
|a Mueller, E.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB72747
|a Mussler, G.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Sigg, H.C.
|b 3
700 1 _ |0 P:(DE-Juel1)125588
|a Gruetzmacher, D.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1479043-9
|a 10.1016/j.ultramic.2010.05.003
|g Vol. 110, p. 1255 - 1266
|p 1255 - 1266
|q 110<1255 - 1266
|t Ultramicroscopy
|v 110
|x 0304-3991
|y 2010
856 7 _ |u http://dx.doi.org/10.1016/j.ultramic.2010.05.003
909 C O |o oai:juser.fz-juelich.de:12071
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2010
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-1
|l Halbleiter-Nanoelektronik
|0 I:(DE-Juel1)VDB799
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)123563
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21