000012073 001__ 12073
000012073 005__ 20250129094353.0
000012073 0247_ $$2DOI$$a10.1122/1.3483610
000012073 0247_ $$2WOS$$aWOS:000283505000004
000012073 0247_ $$2Handle$$a2128/18117
000012073 037__ $$aPreJuSER-12073
000012073 041__ $$aeng
000012073 082__ $$a530
000012073 084__ $$2WoS$$aMechanics
000012073 1001_ $$0P:(DE-HGF)0$$aRenou, F.$$b0
000012073 245__ $$aYielding processes in a colloidal glass of soft star-like micelles under large amplitude oscillatory shear (LAOS)
000012073 260__ $$aMelville, NY [u.a.]$$bInst.$$c2010
000012073 300__ $$a1219 - 1242
000012073 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012073 3367_ $$2DataCite$$aOutput Types/Journal article
000012073 3367_ $$00$$2EndNote$$aJournal Article
000012073 3367_ $$2BibTeX$$aARTICLE
000012073 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012073 3367_ $$2DRIVER$$aarticle
000012073 440_0 $$020321$$aJournal of Rheology$$v54$$x0148-6055$$y6
000012073 500__ $$aWe thank Nikos Koumakis and Andreas Poulos for valuable discussions and technical assistance and Simon Rogers for fruitful discussions. We also acknowledge Randy Ewoldt for providing the MITLAOS software for the Chebyshev decomposition. This work has been supported by the EU funding through NoE Softcomp, ToK Cosines, and NMP SMALL Nanodirect. J.S. acknowledges DFG for support via SFB-TR6.
000012073 520__ $$aThe understanding of yielding and flow of a colloidal glass under large amplitude oscillatory shear (LAOS) represents a motivating challenge. Monitoring the higher harmonics in the stress signal by Fourier-transform (FT) rheology may provide useful insight on the progressive transition from linear to nonlinear viscoelastic response. However, the physical interpretation of FT-rheology data is still not obvious. Here we study the process of yielding in a colloidal glass formed by star-like block copolymer micelles with LAOS experiments and interrogate the nonlinear intracycle stress response by FT analysis and decomposition to an orthogonal set of Chebyshev polynomials [Ewoldt, R. H., et al. J. Rheol. 52(6), 1427-1458 (2008)]. Such approach provides a robust framework enabling us to map out a rich phenomenology of intracylce nonlinearities that may relate to distinct physical mechanisms. We find that the nonlinearities during yielding are represented by intracylce shear thickening/thinning and strain hardening/softening of the viscous and elastic response of the system, respectively. We suggest that the underlying mechanisms are related to cage breaking and reformation as well as stress storing and relaxation within the period of oscillatory shear which are affected by an interplay between shear and Brownian motions and thus relate to Peclet number variation with strain and frequency. (C) 2010 The Society of Rheology. [DOI: 10.1122/1.3483610]
000012073 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000012073 536__ $$0G:(DE-Juel1)FUEK415$$2G:(DE-HGF)$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000012073 588__ $$aDataset connected to Web of Science
000012073 650_7 $$2WoSType$$aJ
000012073 7001_ $$0P:(DE-Juel1)130986$$aStellbrink, J.$$b1$$uFZJ
000012073 7001_ $$0P:(DE-HGF)0$$aPetekidis, G.$$b2
000012073 773__ $$0PERI:(DE-600)1461060-7$$a10.1122/1.3483610$$gVol. 54, p. 1219 - 1242$$p1219 - 1242$$q54<1219 - 1242$$tJournal of rheology online$$v54$$x0148-6055$$y2010
000012073 8567_ $$uhttp://dx.doi.org/10.1122/1.3483610
000012073 8564_ $$uhttps://juser.fz-juelich.de/record/12073/files/1.3483610.pdf$$yOpenAccess
000012073 8564_ $$uhttps://juser.fz-juelich.de/record/12073/files/1.3483610.gif?subformat=icon$$xicon$$yOpenAccess
000012073 8564_ $$uhttps://juser.fz-juelich.de/record/12073/files/1.3483610.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012073 8564_ $$uhttps://juser.fz-juelich.de/record/12073/files/1.3483610.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000012073 8564_ $$uhttps://juser.fz-juelich.de/record/12073/files/1.3483610.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000012073 909CO $$ooai:juser.fz-juelich.de:12073$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000012073 9141_ $$y2010
000012073 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012073 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012073 9131_ $$0G:(DE-Juel1)FUEK505$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000012073 9131_ $$0G:(DE-Juel1)FUEK415$$aDE-HGF$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000012073 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000012073 9201_ $$0I:(DE-Juel1)VDB785$$d31.12.2010$$gIFF$$kIFF-5$$lNeutronenstreuung$$x0
000012073 9201_ $$0I:(DE-Juel1)VDB784$$d31.12.2010$$gIFF$$kIFF-4$$lStreumethoden$$x1
000012073 9201_ $$0I:(DE-Juel1)JCNS-20121112$$kJülich Centre for Neutron Science JCNS (JCNS) ; JCNS$$lJCNS$$x2
000012073 970__ $$aVDB:(DE-Juel1)123565
000012073 9801_ $$aFullTexts
000012073 980__ $$aVDB
000012073 980__ $$aConvertedRecord
000012073 980__ $$ajournal
000012073 980__ $$aI:(DE-Juel1)ICS-1-20110106
000012073 980__ $$aI:(DE-Juel1)PGI-4-20110106
000012073 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000012073 980__ $$aUNRESTRICTED
000012073 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000012073 980__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000012073 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000012073 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000012073 981__ $$aI:(DE-Juel1)IBI-8-20200312
000012073 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000012073 981__ $$aI:(DE-Juel1)ICS-1-20110106
000012073 981__ $$aI:(DE-Juel1)PGI-4-20110106
000012073 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000012073 981__ $$aI:(DE-Juel1)JCNS-SNS-20110128
000012073 981__ $$aI:(DE-Juel1)JCNS-ILL-20110128