000012102 001__ 12102
000012102 005__ 20200423202838.0
000012102 0247_ $$2DOI$$a10.1029/2008WR007060
000012102 0247_ $$2WOS$$aWOS:000276552300001
000012102 0247_ $$2Handle$$a2128/20629
000012102 0247_ $$2altmetric$$aaltmetric:10029339
000012102 037__ $$aPreJuSER-12102
000012102 041__ $$aeng
000012102 082__ $$a550
000012102 084__ $$2WoS$$aEnvironmental Sciences
000012102 084__ $$2WoS$$aLimnology
000012102 084__ $$2WoS$$aWater Resources
000012102 1001_ $$0P:(DE-HGF)0$$aHinnell, A.C.$$b0
000012102 245__ $$aImproved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion
000012102 260__ $$aWashington, DC$$bAGU$$c2010
000012102 300__ $$aW00D30
000012102 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012102 3367_ $$2DataCite$$aOutput Types/Journal article
000012102 3367_ $$00$$2EndNote$$aJournal Article
000012102 3367_ $$2BibTeX$$aARTICLE
000012102 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012102 3367_ $$2DRIVER$$aarticle
000012102 440_0 $$05958$$aWater Resources Research$$v46$$x0043-1397
000012102 500__ $$aWe would like to thank Kamini Singha and the anonymous reviewers for their thorough reviews and helpful suggestions for improving the manuscript. During this project, Andrew Hinnell was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant 2003-351023674. Ty Ferre was supported by the National Science Foundation as the director of the CUAHSI HydroGeoPhysics facility under grant EAR 07-53521 awarded to the Consortium of Universities for the Advancement of Hydrologic Science. Jasper Vrugt was supported by a J. Robert Oppenheimer Fellowship from the Los Alamos National Laboratory postdoctoral program. J. A. Huisman is supported by grant HU1312/2 of the Deutsche Forschungsgemeinschaft (DFG). Michael Kowalsky was supported by the U.S. Department of Energy, contract DE-AC02-05CH11231.
000012102 520__ $$aThere is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e. g., electrical conductivity). The geophysical property is then converted to a hydrologic property (e. g., water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one dimensional infiltration and redistribution. Through this illustrative example, we show that the coupled approach can provide significant reductions in uncertainty for hydrologic properties and associated predictions if the underlying model is a faithful representation of the hydrologic processes. However, if the hydrologic model exhibits structural errors, the coupled inversion may not improve the hydrologic interpretation. Despite this limitation, our results support the use of coupled hydrogeophysical inversion both for the direct benefits of reduced errors during inversion and because of the secondary benefits that accrue because of the extensive communication and sharing of data necessary to produce a coupled model, which will likely lead to more thoughtful use of geophysical data in hydrologic studies.
000012102 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000012102 588__ $$aDataset connected to Web of Science
000012102 650_7 $$2WoSType$$aJ
000012102 7001_ $$0P:(DE-HGF)0$$aFerre, T.P.A.$$b1
000012102 7001_ $$0P:(DE-HGF)0$$aVrugt, J.A.$$b2
000012102 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b3$$uFZJ
000012102 7001_ $$0P:(DE-HGF)0$$aMoysey, S.$$b4
000012102 7001_ $$0P:(DE-Juel1)VDB85768$$aRings, J.$$b5$$uFZJ
000012102 7001_ $$0P:(DE-HGF)0$$aKowalsky, M.B.$$b6
000012102 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2008WR007060$$gVol. 46, p. W00D30$$pW00D30$$q46<W00D30$$tWater resources research$$v46$$x0043-1397$$y2010
000012102 8567_ $$uhttp://dx.doi.org/10.1029/2008WR007060
000012102 8564_ $$uhttps://juser.fz-juelich.de/record/12102/files/Hinnell_et_al-2010-Water_Resources_Research.pdf$$yOpenAccess
000012102 8564_ $$uhttps://juser.fz-juelich.de/record/12102/files/Hinnell_et_al-2010-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000012102 8564_ $$uhttps://juser.fz-juelich.de/record/12102/files/Hinnell_et_al-2010-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012102 8564_ $$uhttps://juser.fz-juelich.de/record/12102/files/Hinnell_et_al-2010-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000012102 8564_ $$uhttps://juser.fz-juelich.de/record/12102/files/Hinnell_et_al-2010-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000012102 909CO $$ooai:juser.fz-juelich.de:12102$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000012102 9141_ $$y2010
000012102 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012102 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012102 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000012102 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000012102 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000012102 970__ $$aVDB:(DE-Juel1)123631
000012102 980__ $$aVDB
000012102 980__ $$aConvertedRecord
000012102 980__ $$ajournal
000012102 980__ $$aI:(DE-Juel1)IBG-3-20101118
000012102 980__ $$aUNRESTRICTED
000012102 9801_ $$aFullTexts
000012102 981__ $$aI:(DE-Juel1)IBG-3-20101118