000012186 001__ 12186
000012186 005__ 20211111141634.0
000012186 0247_ $$2DOI$$a10.1007/JHEP08(2011)148
000012186 0247_ $$2WOS$$aWOS:000294901200011
000012186 0247_ $$2altmetric$$aaltmetric:13234591
000012186 0247_ $$2Handle$$a2128/28992
000012186 037__ $$aPreJuSER-12186
000012186 041__ $$aeng
000012186 082__ $$a530
000012186 084__ $$2WoS$$aPhysics, Particles & Fields
000012186 1001_ $$0P:(DE-HGF)0$$aDürr, S.$$b0
000012186 245__ $$aLattice QCD at the physical point: simulation and analysis details
000012186 260__ $$aBerlin$$bSpringer$$c2011
000012186 300__ $$a148
000012186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012186 3367_ $$2DataCite$$aOutput Types/Journal article
000012186 3367_ $$00$$2EndNote$$aJournal Article
000012186 3367_ $$2BibTeX$$aARTICLE
000012186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012186 3367_ $$2DRIVER$$aarticle
000012186 440_0 $$013263$$aJournal of High Energy Physics$$v8$$x1126-6708
000012186 500__ $$aWe used HPC resources from FZ Julich and from GENCI-[IDRIS/CCRT] grant 52275, as well as clusters at Wuppertal and CPT. This work is supported in part by EU grants I3HP, FP7/2007-2013/ERC no 208740, MRTN-CT-2006-035482 (FLAVIAnet), DFG grant FO 502/2, SFB-TR 55, CNRS GDR 2921 and PICS 4707.
000012186 520__ $$aWe give details of our precise determination of the light quark masses m(ud) = (m(u)+m(d))/2 and m(s) in 2+1 flavor QCD, with simulated pion masses down to 120 MeV, at five lattice spacings, and in large volumes. The details concern the action and algorithm employed, the HMC force with HEX smeared clover fermions, the choice of the scale setting procedure and of the input masses. After an overview of the simulation parameters, extensive checks of algorithmic stability, autocorrelation and (practical) ergodicity are reported. To corroborate the good scaling properties of our action, explicit tests of the scaling of hadron masses in N-f = 3 QCD are carried out. Details of how we control finite volume effects through dedicated finite volume scaling runs are reported. To check consistency with SU(2) Chiral Perturbation Theory the behavior of M-pi(2)/m(ud) and F-pi as a function of m(ud) is investigated. Details of how we use the RI/MOM procedure with a separate continuum limit of the running of the scalar density R-S(mu, mu') are given. This procedure is shown to reproduce the known value of r(0)m(s) in quenched QCD. Input from dispersion theory is used to split our value of mud into separate values of m(u) and m(d). Finally, our procedure to quantify both systematic and statistical uncertainties is discussed.
000012186 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000012186 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000012186 536__ $$0G:(EU-Grant)208740$$aQCDTHERMO - QCD thermodynamics on the lattice (208740)$$c208740$$fERC-2007-StG$$x2
000012186 588__ $$aDataset connected to Web of Science
000012186 65320 $$2Author$$aLattice QCD
000012186 65320 $$2Author$$aLattice Gauge Field Theories
000012186 650_7 $$2WoSType$$aJ
000012186 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b1
000012186 7001_ $$0P:(DE-HGF)0$$aHoelbling, C.$$b2
000012186 7001_ $$0P:(DE-HGF)0$$aKatz, S.D.$$b3
000012186 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b4$$uFZJ
000012186 7001_ $$0P:(DE-HGF)0$$aKurth, T.$$b5
000012186 7001_ $$0P:(DE-HGF)0$$aLellouch, L.$$b6
000012186 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b7$$uFZJ
000012186 7001_ $$0P:(DE-HGF)0$$aSzabo, K.K.$$b8
000012186 7001_ $$0P:(DE-HGF)0$$aVulvert, G.$$b9
000012186 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP08(2011)148$$gVol. 2011, p. 148$$p148$$q2011<148$$tJournal of high energy physics$$v2011$$x1126-6708$$y2011
000012186 8567_ $$uhttp://dx.doi.org/10.1007/JHEP08(2011)148
000012186 8564_ $$uhttps://juser.fz-juelich.de/record/12186/files/D%C3%BCrr2011_Article_LatticeQCDAtThePhysicalPointSi.pdf$$yOpenAccess
000012186 909CO $$ooai:juser.fz-juelich.de:12186$$pdriver$$popen_access$$popenaire$$pVDB$$pec_fundedresources$$pdnbdelivery
000012186 9141_ $$y2011
000012186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012186 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012186 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000012186 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000012186 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000012186 970__ $$aVDB:(DE-Juel1)123724
000012186 980__ $$aVDB
000012186 980__ $$aConvertedRecord
000012186 980__ $$ajournal
000012186 980__ $$aI:(DE-Juel1)JSC-20090406
000012186 980__ $$aUNRESTRICTED
000012186 9801_ $$aFullTexts