001     12186
005     20211111141634.0
024 7 _ |a 10.1007/JHEP08(2011)148
|2 DOI
024 7 _ |a WOS:000294901200011
|2 WOS
024 7 _ |a altmetric:13234591
|2 altmetric
024 7 _ |a 2128/28992
|2 Handle
037 _ _ |a PreJuSER-12186
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Particles & Fields
100 1 _ |0 P:(DE-HGF)0
|a Dürr, S.
|b 0
245 _ _ |a Lattice QCD at the physical point: simulation and analysis details
260 _ _ |a Berlin
|b Springer
|c 2011
300 _ _ |a 148
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 13263
|a Journal of High Energy Physics
|v 8
|x 1126-6708
500 _ _ |a We used HPC resources from FZ Julich and from GENCI-[IDRIS/CCRT] grant 52275, as well as clusters at Wuppertal and CPT. This work is supported in part by EU grants I3HP, FP7/2007-2013/ERC no 208740, MRTN-CT-2006-035482 (FLAVIAnet), DFG grant FO 502/2, SFB-TR 55, CNRS GDR 2921 and PICS 4707.
520 _ _ |a We give details of our precise determination of the light quark masses m(ud) = (m(u)+m(d))/2 and m(s) in 2+1 flavor QCD, with simulated pion masses down to 120 MeV, at five lattice spacings, and in large volumes. The details concern the action and algorithm employed, the HMC force with HEX smeared clover fermions, the choice of the scale setting procedure and of the input masses. After an overview of the simulation parameters, extensive checks of algorithmic stability, autocorrelation and (practical) ergodicity are reported. To corroborate the good scaling properties of our action, explicit tests of the scaling of hadron masses in N-f = 3 QCD are carried out. Details of how we control finite volume effects through dedicated finite volume scaling runs are reported. To check consistency with SU(2) Chiral Perturbation Theory the behavior of M-pi(2)/m(ud) and F-pi as a function of m(ud) is investigated. Details of how we use the RI/MOM procedure with a separate continuum limit of the running of the scalar density R-S(mu, mu') are given. This procedure is shown to reproduce the known value of r(0)m(s) in quenched QCD. Input from dispersion theory is used to split our value of mud into separate values of m(u) and m(d). Finally, our procedure to quantify both systematic and statistical uncertainties is discussed.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
536 _ _ |a QCDTHERMO - QCD thermodynamics on the lattice (208740)
|0 G:(EU-Grant)208740
|c 208740
|x 2
|f ERC-2007-StG
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Lattice QCD
653 2 0 |2 Author
|a Lattice Gauge Field Theories
700 1 _ |0 P:(DE-HGF)0
|a Fodor, Z.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Hoelbling, C.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Katz, S.D.
|b 3
700 1 _ |0 P:(DE-Juel1)132171
|a Krieg, S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Kurth, T.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Lellouch, L.
|b 6
700 1 _ |0 P:(DE-Juel1)132179
|a Lippert, T.
|b 7
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Szabo, K.K.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Vulvert, G.
|b 9
773 _ _ |0 PERI:(DE-600)2027350-2
|a 10.1007/JHEP08(2011)148
|g Vol. 2011, p. 148
|p 148
|q 2011<148
|t Journal of high energy physics
|v 2011
|x 1126-6708
|y 2011
856 7 _ |u http://dx.doi.org/10.1007/JHEP08(2011)148
856 4 _ |u https://juser.fz-juelich.de/record/12186/files/D%C3%BCrr2011_Article_LatticeQCDAtThePhysicalPointSi.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:12186
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2011
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)123724
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21