000012388 001__ 12388
000012388 005__ 20180208213344.0
000012388 0247_ $$2pmid$$apmid:20803196
000012388 0247_ $$2DOI$$a10.1007/s00216-010-4111-z
000012388 0247_ $$2WOS$$aWOS:000284542300006
000012388 037__ $$aPreJuSER-12388
000012388 041__ $$aeng
000012388 082__ $$a540
000012388 084__ $$2WoS$$aBiochemical Research Methods
000012388 084__ $$2WoS$$aChemistry, Analytical
000012388 1001_ $$0P:(DE-Juel1)129471$$aHofmann, D.$$b0$$uFZJ
000012388 245__ $$aStructure elucidation of the thermal degradation products of the nucleotide cofactors NADH and NADPH by nano-ESI-FTICR-MS and HPLC-MS
000012388 260__ $$aBerlin$$bSpringer$$c2010
000012388 300__ $$a
000012388 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012388 3367_ $$2DataCite$$aOutput Types/Journal article
000012388 3367_ $$00$$2EndNote$$aJournal Article
000012388 3367_ $$2BibTeX$$aARTICLE
000012388 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012388 3367_ $$2DRIVER$$aarticle
000012388 440_0 $$08664$$aAnalytical and Bioanalytical Chemistry$$v398$$x1618-2642$$y7
000012388 500__ $$aRecord converted from VDB: 12.11.2012
000012388 520__ $$aRedox cofactors like NADH and NADPH are essential for the catalytic activity of several oxidoreductases. Here, we describe a comparative study of the thermal degradation products of both cofactors in the dry and liquid states. The degradation products were first separated, detected, and quantified by high-performance liquid chromatography (HPLC). Subsequently, selected main fractions were investigated by nanoelectrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (MS). Additionally, HPLC-MS was used to elucidate the structure of all degradation products. From these data, degradation pathways for both the liquid and the solid states were elucidated. Thermal degradation in water is significantly faster compared to degradation in the solid state. Hydrolysis and oxidative ring opening of the reduced nicotinamide adenine dinucleotide (phosphate) were shown to be the main reaction paths. Surprisingly, no significant differences were observed between the degradation of both cofactors in solution and in the solid state. Our results demonstrate that the stability of both cofactors is not limiting at moderate temperatures if they are used in the dry state (e.g., solid/gas catalysis). Significant degradation of dry cofactors was only observed under conditions, which are usually not appropriate for biocatalysis (>95 °C). Besides, the situation is completely different in solution where degradation is already observed at moderate temperatures.
000012388 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000012388 536__ $$0G:(DE-Juel1)FUEK410$$aBiotechnologie$$cPBT$$x1
000012388 588__ $$aDataset connected to Web of Science, Pubmed
000012388 650_2 $$2MeSH$$aChromatography, High Pressure Liquid: methods
000012388 650_2 $$2MeSH$$aFourier Analysis
000012388 650_2 $$2MeSH$$aHot Temperature
000012388 650_2 $$2MeSH$$aNAD: chemistry
000012388 650_2 $$2MeSH$$aNADP: chemistry
000012388 650_2 $$2MeSH$$aSpectrometry, Mass, Electrospray Ionization: methods
000012388 650_7 $$053-59-8$$2NLM Chemicals$$aNADP
000012388 650_7 $$053-84-9$$2NLM Chemicals$$aNAD
000012388 650_7 $$2WoSType$$aJ
000012388 65320 $$2Author$$aFTICR-MS
000012388 65320 $$2Author$$aHPLC-MS
000012388 65320 $$2Author$$aNADH
000012388 65320 $$2Author$$aNADPH
000012388 65320 $$2Author$$aChip-based nanoelectrospray
000012388 65320 $$2Author$$aHILIC
000012388 7001_ $$0P:(DE-HGF)0$$aWirtz, A.$$b1
000012388 7001_ $$0P:(DE-Juel1)VDB59846$$aSantiago-Schübel, B.$$b2$$uFZJ
000012388 7001_ $$0P:(DE-Juel1)VDB41705$$aDisko, U.$$b3$$uFZJ
000012388 7001_ $$0P:(DE-HGF)0$$aPohl, M.$$b4
000012388 773__ $$0PERI:(DE-600)1459122-4$$a10.1007/s00216-010-4111-z$$gVol. 398$$q398$$tAnalytical and bioanalytical chemistry$$v398$$x1618-2642$$y2010
000012388 8567_ $$uhttp://dx.doi.org/10.1007/s00216-010-4111-z
000012388 909CO $$ooai:juser.fz-juelich.de:12388$$pVDB
000012388 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000012388 9131_ $$0G:(DE-Juel1)FUEK410$$baußerhalb PoF$$kPBT$$lohne FE$$vBiotechnologie$$x1
000012388 9132_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000012388 9141_ $$y2010
000012388 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012388 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000012388 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x1
000012388 9201_ $$0I:(DE-Juel1)VDB56$$gIBT$$kIBT-2$$lBiotechnologie 2$$x2$$zab 31.10.10 weitergeführt IBG-1
000012388 9201_ $$0I:(DE-Juel1)VDB56$$gIBT$$kIBT-2$$lBiotechnologie 2$$x3$$zab 31.10.10 weitergeführt IBG-1
000012388 970__ $$aVDB:(DE-Juel1)124003
000012388 980__ $$aVDB
000012388 980__ $$aConvertedRecord
000012388 980__ $$ajournal
000012388 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000012388 980__ $$aI:(DE-Juel1)IBG-3-20101118
000012388 980__ $$aI:(DE-Juel1)IBG-1-20101118
000012388 980__ $$aI:(DE-Juel1)IBG-1-20101118
000012388 980__ $$aUNRESTRICTED
000012388 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000012388 981__ $$aI:(DE-Juel1)IBG-3-20101118
000012388 981__ $$aI:(DE-Juel1)IBG-1-20101118
000012388 981__ $$aI:(DE-Juel1)IBG-1-20101118
000012388 981__ $$aI:(DE-Juel1)ZCH-20090406