Hauptseite > Publikationsdatenbank > Specific cellular water dynamics observed in vivo by neutron scattering and NMR > print |
001 | 12506 | ||
005 | 20200402205929.0 | ||
024 | 7 | _ | |2 pmid |a pmid:20714607 |
024 | 7 | _ | |2 DOI |a 10.1039/C0CP01048K |
024 | 7 | _ | |2 WOS |a WOS:000281352300003 |
024 | 7 | _ | |2 ISSN |a 1463-9076 |
037 | _ | _ | |a PreJuSER-12506 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 540 |
084 | _ | _ | |2 WoS |a Chemistry, Physical |
084 | _ | _ | |2 WoS |a Physics, Atomic, Molecular & Chemical |
100 | 1 | _ | |a Jasnin, M. |b 0 |0 P:(DE-HGF)0 |
245 | _ | _ | |a Specific cellular water dynamics observed in vivo by neutron scattering and NMR |
260 | _ | _ | |c 2010 |a Cambridge |b RSC Publ. |
300 | _ | _ | |a 10154 - 10160 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |a Physical Chemistry Chemical Physics |x 1463-9076 |0 4916 |y 35 |v 12 |
500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
520 | _ | _ | |a Neutron scattering, by using deuterium labelling, revealed how intracellular water dynamics, measured in vivo in E. coli, human red blood cells and the extreme halophile, Haloarcula marismortui, depends on the cell type and nature of the cytoplasm. The method uniquely permits the determination of motions on the molecular length (approximately ångstrøm) and time (pico- to nanosecond) scales. In the bacterial and human cells, intracellular water beyond the hydration shells of cytoplasmic macromolecules and membrane faces flows as freely as liquid water. It is not "tamed" by confinement. In contrast, in the extreme halophile archaeon, in addition to free and hydration water an intracellular water component was observed with significantly slowed down translational diffusion. The results are discussed and compared to observations in E. coli and Haloarcula marismortui by deuteron spin relaxation in NMR--a method that is sensitive to water rotational dynamics on a wide range of time scales. |
536 | _ | _ | |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |c P45 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK505 |x 0 |
588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
650 | _ | 2 | |2 MeSH |a Erythrocytes: metabolism |
650 | _ | 2 | |2 MeSH |a Escherichia coli: cytology |
650 | _ | 2 | |2 MeSH |a Escherichia coli: metabolism |
650 | _ | 2 | |2 MeSH |a Haloarcula marismortui: cytology |
650 | _ | 2 | |2 MeSH |a Haloarcula marismortui: metabolism |
650 | _ | 2 | |2 MeSH |a Hemoglobins: metabolism |
650 | _ | 2 | |2 MeSH |a Humans |
650 | _ | 2 | |2 MeSH |a Magnetic Resonance Spectroscopy |
650 | _ | 2 | |2 MeSH |a Neutron Diffraction |
650 | _ | 2 | |2 MeSH |a Water: metabolism |
650 | _ | 7 | |0 0 |2 NLM Chemicals |a Hemoglobins |
650 | _ | 7 | |0 7732-18-5 |2 NLM Chemicals |a Water |
650 | _ | 7 | |a J |2 WoSType |
700 | 1 | _ | |a Stadler, A. |b 1 |u FZJ |0 P:(DE-Juel1)VDB86542 |
700 | 1 | _ | |a Tehei, M |b 2 |0 P:(DE-HGF)0 |
700 | 1 | _ | |a Zaccai, G. |b 3 |0 P:(DE-HGF)0 |
773 | _ | _ | |0 PERI:(DE-600)1476244-4 |a 10.1039/c0cp01048k |g Vol. 12, p. 10154 - 10160 |p 10154 - 10160 |q 12<10154 - 10160 |t Physical Chemistry Chemical Physics |v 12 |x 1463-9076 |y 2010 |
856 | 7 | _ | |u http://dx.doi.org/10.1039/C0CP01048K |
909 | C | O | |o oai:juser.fz-juelich.de:12506 |p VDB |
913 | 1 | _ | |k P45 |v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung |l Biologische Informationsverarbeitung |b Schlüsseltechnologien |0 G:(DE-Juel1)FUEK505 |x 0 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-552 |2 G:(DE-HGF)POF3-500 |v Engineering Cell Function |x 0 |
914 | 1 | _ | |y 2010 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
920 | 1 | _ | |k ISB-2 |l Molekulare Biophysik |d 31.12.2010 |g ISB |0 I:(DE-Juel1)ISB-2-20090406 |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)124130 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IBI-7-20200312 |
981 | _ | _ | |a I:(DE-Juel1)ICS-6-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ISB-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|