000012512 001__ 12512
000012512 005__ 20240712100951.0
000012512 0247_ $$2DOI$$a10.5194/acp-10-7253-2010
000012512 0247_ $$2WOS$$aWOS:000280847700018
000012512 0247_ $$2Handle$$a2128/7260
000012512 037__ $$aPreJuSER-12512
000012512 041__ $$aeng
000012512 082__ $$a550
000012512 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000012512 1001_ $$0P:(DE-HGF)0$$aLang-Yona, N.$$b0
000012512 245__ $$aThe chemical and microphysical properties of secondary organic aerosols from Holm Oak emissions
000012512 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000012512 300__ $$a7253 - 7265
000012512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012512 3367_ $$2DataCite$$aOutput Types/Journal article
000012512 3367_ $$00$$2EndNote$$aJournal Article
000012512 3367_ $$2BibTeX$$aARTICLE
000012512 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012512 3367_ $$2DRIVER$$aarticle
000012512 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v10$$x1680-7316$$y15
000012512 500__ $$aWe gratefully acknowledge the support by the European Commission (IP-EUCAARI, Contract No. 036833-2, by the ESF (INTROP) and by the Israel Science Foundation (grants 1527/07 and 196/08). Yinon Rudich acknowledges financial support by the Helen and Martin Kimmel Award for Innovative Investigation.
000012512 520__ $$aThe Mediterranean region is expected to experience substantial climatic change in the next 50 years. But, possible effects of climate change on biogenic volatile organic compound (VOC) emissions as well as on the formation of secondary organic aerosols (SOA) produced from these VOC are yet unexplored. To address such issues, the effects of temperature on the VOC emissions of Mediterranean Holm Oak and small Mediterranean stand of Wild Pistacio, Aleppo Pine, and Palestine Oak have been studied in the Julich plant aerosol atmosphere chamber. For Holm Oak the optical and microphysical properties of the resulting SOA were investigated.Monoterpenes dominated the VOC emissions from Holm Oak (97.5%) and Mediterranean stand (97%). Higher temperatures enhanced the overall VOC emission but with different ratios of the emitted species. The amount of SOA increased linearly with the emission strength with a fractional mass yield of 6.0+/-0.6%, independent of the detailed emission pattern. The investigated particles were highly scattering with no absorption abilities. Their average hygroscopic growth factor of 1.13+/-0.03 at 90% RH with a critical diameter of droplet activation was 100+/-4 nm at a supersaturation of 0.4%. All microphysical properties did not depend on the detailed emission pattern, in accordance with an invariant O/C ratio (0.57(+0.03/-0.1)) of the SOA observed by high resolution aerosol mass spectrometry.The increase of Holm oak emissions with temperature (approximate to 20% per degree) was stronger than e.g. for Boreal tree species (approximate to 10% per degree). The SOA yield for Mediterranean trees determined here is similar as for Boreal trees. Increasing mean temperature in Mediterranean areas could thus have a stronger impact on BVOC emissions and SOA formation than in areas with Boreal forests.
000012512 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000012512 588__ $$aDataset connected to Web of Science
000012512 650_7 $$2WoSType$$aJ
000012512 7001_ $$0P:(DE-HGF)0$$aRudich, Y.$$b1
000012512 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b2$$uFZJ
000012512 7001_ $$0P:(DE-HGF)0$$aBohne, A.$$b3
000012512 7001_ $$0P:(DE-Juel1)VDB193$$aBuchholz, A.$$b4$$uFZJ
000012512 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b5$$uFZJ
000012512 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b6$$uFZJ
000012512 7001_ $$0P:(DE-Juel1)VDB73341$$aSpindler, C.$$b7$$uFZJ
000012512 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b8$$uFZJ
000012512 7001_ $$0P:(DE-Juel1)VDB1780$$aWildt, J.$$b9$$uFZJ
000012512 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-7253-2010$$gVol. 10, p. 7253 - 7265$$p7253 - 7265$$q10<7253 - 7265$$tAtmospheric chemistry and physics$$v10$$x1680-7316$$y2010
000012512 8567_ $$uhttp://dx.doi.org/10.5194/acp-10-7253-2010
000012512 8564_ $$uhttps://juser.fz-juelich.de/record/12512/files/FZJ-12512.pdf$$yOpenAccess$$zPublished final document.
000012512 8564_ $$uhttps://juser.fz-juelich.de/record/12512/files/FZJ-12512.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000012512 8564_ $$uhttps://juser.fz-juelich.de/record/12512/files/FZJ-12512.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012512 8564_ $$uhttps://juser.fz-juelich.de/record/12512/files/FZJ-12512.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000012512 909CO $$ooai:juser.fz-juelich.de:12512$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000012512 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000012512 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012512 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000012512 9141_ $$y2010
000012512 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000012512 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000012512 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x1
000012512 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x2
000012512 970__ $$aVDB:(DE-Juel1)124136
000012512 9801_ $$aFullTexts
000012512 980__ $$aVDB
000012512 980__ $$aConvertedRecord
000012512 980__ $$ajournal
000012512 980__ $$aI:(DE-Juel1)IEK-8-20101013
000012512 980__ $$aI:(DE-Juel1)IBG-2-20101118
000012512 980__ $$aUNRESTRICTED
000012512 980__ $$aJUWEL
000012512 980__ $$aFullTexts
000012512 981__ $$aI:(DE-Juel1)ICE-3-20101013
000012512 981__ $$aI:(DE-Juel1)IBG-2-20101118