000012513 001__ 12513
000012513 005__ 20240712101030.0
000012513 0247_ $$2DOI$$a10.5194/acp-10-7709-2010
000012513 0247_ $$2WOS$$aWOS:000281432800013
000012513 0247_ $$2Handle$$a2128/10044
000012513 037__ $$aPreJuSER-12513
000012513 041__ $$aeng
000012513 082__ $$a550
000012513 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000012513 1001_ $$0P:(DE-HGF)0$$aRoelofs, G.-J.$$b0
000012513 245__ $$aEvaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field compaign
000012513 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000012513 300__ $$a7709 - 7722
000012513 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012513 3367_ $$2DataCite$$aOutput Types/Journal article
000012513 3367_ $$00$$2EndNote$$aJournal Article
000012513 3367_ $$2BibTeX$$aARTICLE
000012513 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012513 3367_ $$2DRIVER$$aarticle
000012513 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v10$$x1680-7316$$y16
000012513 500__ $$aWe thank Sebastian Rast from the Max Planck Institute for Meteorology in Hamburg for his help with the nudging procedure. We thank SARA Reken- en Netwerkdiensten in Amsterdam for use of their supercomputer, and acknowledge the use of the Ferret program for the graphics (www.ferret.noaa.gov). We acknowledge AERONET for use of their data and their effort in establishing and maintaining the Cabauw site. This work has been partly funded by EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions) No. 036833-2.
000012513 520__ $$aIn May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT) for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately -30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL) dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.
000012513 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000012513 588__ $$aDataset connected to Web of Science
000012513 650_7 $$2WoSType$$aJ
000012513 7001_ $$0P:(DE-HGF)0$$aten Brink, H.$$b1
000012513 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b2$$uFZJ
000012513 7001_ $$0P:(DE-HGF)0$$ade Leeuw, G.$$b3
000012513 7001_ $$0P:(DE-Juel1)VDB66036$$aMensah, A.$$b4$$uFZJ
000012513 7001_ $$0P:(DE-HGF)0$$aMinikin, A.$$b5
000012513 7001_ $$0P:(DE-HGF)0$$aOtjes, R.$$b6
000012513 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-7709-2010$$gVol. 10, p. 7709 - 7722$$p7709 - 7722$$q10<7709 - 7722$$tAtmospheric chemistry and physics$$v10$$x1680-7316$$y2010
000012513 8567_ $$uhttp://dx.doi.org/10.5194/acp-10-7709-2010
000012513 8564_ $$uhttps://juser.fz-juelich.de/record/12513/files/acp-10-7709-2010.pdf$$yOpenAccess
000012513 8564_ $$uhttps://juser.fz-juelich.de/record/12513/files/acp-10-7709-2010.gif?subformat=icon$$xicon$$yOpenAccess
000012513 8564_ $$uhttps://juser.fz-juelich.de/record/12513/files/acp-10-7709-2010.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000012513 8564_ $$uhttps://juser.fz-juelich.de/record/12513/files/acp-10-7709-2010.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000012513 8564_ $$uhttps://juser.fz-juelich.de/record/12513/files/acp-10-7709-2010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000012513 909CO $$ooai:juser.fz-juelich.de:12513$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000012513 9141_ $$y2010
000012513 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000012513 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000012513 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000012513 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000012513 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x1
000012513 970__ $$aVDB:(DE-Juel1)124137
000012513 9801_ $$aUNRESTRICTED
000012513 9801_ $$aFullTexts
000012513 980__ $$aVDB
000012513 980__ $$aConvertedRecord
000012513 980__ $$ajournal
000012513 980__ $$aI:(DE-Juel1)IEK-8-20101013
000012513 980__ $$aUNRESTRICTED
000012513 981__ $$aI:(DE-Juel1)ICE-3-20101013