001     12554
005     20211110141629.0
024 7 _ |a 10.1088/1367-2630/12/12/125001
|2 DOI
024 7 _ |a WOS:000285013500001
|2 WOS
024 7 _ |a altmetric:1373296
|2 altmetric
024 7 _ |a 2128/28972
|2 Handle
037 _ _ |a PreJuSER-12554
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Hsieh, D.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Direct observation of spin-polarized surface states in the parent compound of a topological insulator using spin- and angle-resolved photoemission spectroscopy in a Mott-polarimetry mode
260 _ _ |a [Bad Honnef]
|b Dt. Physikalische Ges.
|c 2010
300 _ _ |a 125001
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a New Journal of Physics
|x 1367-2630
|0 8201
|y 12
|v 12
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We report high-resolution spin-resolved photoemission spectroscopy (spin-ARPES) measurements on the parent compound Sb of the recently discovered three-dimensional topological insulator Bi1-xSbx (Hsieh et al 2008 Nature 452 970, Hsieh et al 2009 Science 323 919). By modulating the incident photon energy, we are able to map both the bulk and the (111) surface band structure, from which we directly demonstrate that the surface bands are spin polarized by the spin-orbit interaction and connect the bulk valence and conduction bands in a topologically non-trivial way. A unique asymmetric Dirac surface state gives rise to a k-splitting of its spin-polarized electronic channels. These results complement our previously published works on this class of materials and re-confirm our discovery of topological insulator states in the Bi1-xSbx series.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Wray, L.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Qian, D.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Xia, Y.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Dil, J. H.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB84253
700 1 _ |a Meier, F.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Osterwalder, J.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Bihlmayer, G.
|b 7
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Hor, Y. S.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Cava, R. J.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Hasan, M. Z.
|b 10
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/1367-2630/12/12/125001
|g Vol. 12, p. 125001
|p 125001
|q 12<125001
|0 PERI:(DE-600)1464444-7
|t New journal of physics
|v 12
|y 2010
|x 1367-2630
856 7 _ |u http://dx.doi.org/10.1088/1367-2630/12/12/125001
856 4 _ |u https://juser.fz-juelich.de/record/12554/files/Hsieh_2010_New_J._Phys._12_125001.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:12554
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2010
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IAS-1
|l Quanten-Theorie der Materialien
|g IAS
|z IFF-1
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)124219
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21