000012584 001__ 12584
000012584 005__ 20210129210556.0
000012584 0247_ $$2pmid$$apmid:21438078
000012584 0247_ $$2DOI$$a10.1002/hbm.21220
000012584 0247_ $$2WOS$$aWOS:000299071200012
000012584 037__ $$aPreJuSER-12584
000012584 041__ $$aeng
000012584 082__ $$a610
000012584 1001_ $$0P:(DE-Juel1)131693$$aLangner, R.$$b0$$uFZJ
000012584 245__ $$aStaying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile and visual stimulus detection
000012584 260__ $$aNew York, NY$$bWiley-Liss$$c2012
000012584 300__ $$a398 - 418
000012584 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000012584 3367_ $$2DataCite$$aOutput Types/Journal article
000012584 3367_ $$00$$2EndNote$$aJournal Article
000012584 3367_ $$2BibTeX$$aARTICLE
000012584 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000012584 3367_ $$2DRIVER$$aarticle
000012584 440_0 $$02398$$aHuman Brain Mapping$$v33$$x1065-9471$$y2
000012584 500__ $$aRecord converted from VDB: 12.11.2012
000012584 520__ $$aSustained responsiveness to external stimulation is fundamental to many time-critical interactions with the outside world. We used functional magnetic resonance imaging during speeded stimulus detection to identify convergent and divergent neural correlates of maintaining the readiness to respond to auditory, tactile, and visual stimuli. In addition, using a multimodal condition, we investigated the effect of making stimulus modality unpredictable. Relative to sensorimotor control tasks, all three unimodal detection tasks elicited stronger activity in the right temporo-parietal junction, inferior frontal cortex, anterior insula, dorsal premotor cortex, and anterior cingulate cortex as well as bilateral mid-cingulum, midbrain, brainstem, and medial cerebellum. The multimodal detection condition additionally activated left dorsal premotor cortex and bilateral precuneus. Modality-specific modulations were confined to respective sensory areas: we found activity increases in relevant, and decreases in irrelevant sensory cortices. Our findings corroborate the modality independence of a predominantly right-lateralized core network for maintaining an alert (i.e., highly responsive) state and extend previous results to the somatosensory modality. Monitoring multiple sensory channels appears to induce additional processing, possibly related to stimulus-driven shifts of intermodal attention. The results further suggest that directing attention to a given sensory modality selectively enhances and suppresses sensory processing-even in simple detection tasks, which do not require inter- or intra-modal selection.
000012584 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000012584 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000012584 588__ $$aDataset connected to Pubmed
000012584 650_2 $$2MeSH$$aAcoustic Stimulation
000012584 650_2 $$2MeSH$$aAdult
000012584 650_2 $$2MeSH$$aAttention: physiology
000012584 650_2 $$2MeSH$$aBrain Mapping
000012584 650_2 $$2MeSH$$aFemale
000012584 650_2 $$2MeSH$$aHumans
000012584 650_2 $$2MeSH$$aImage Processing, Computer-Assisted
000012584 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000012584 650_2 $$2MeSH$$aPhotic Stimulation
000012584 650_2 $$2MeSH$$aReaction Time: physiology
000012584 650_2 $$2MeSH$$aSomatosensory Cortex: physiology
000012584 650_2 $$2MeSH$$aTouch Perception
000012584 7001_ $$0P:(DE-Juel1)VDB18937$$aKellermann, T.$$b1$$uFZJ
000012584 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, S. B.$$b2$$uFZJ
000012584 7001_ $$0P:(DE-Juel1)VDB131$$aBoers, F.$$b3$$uFZJ
000012584 7001_ $$0P:(DE-HGF)0$$aChatterjee, A.$$b4
000012584 7001_ $$0P:(DE-HGF)0$$aWillmes, K.$$b5
000012584 7001_ $$0P:(DE-HGF)0$$aSturm, W.$$b6
000012584 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.21220$$gVol. 33, p. 398 - 418$$p398 - 418$$q33<398 - 418$$tHuman brain mapping$$v33$$x1065-9471$$y2012
000012584 8567_ $$uhttp://dx.doi.org/10.1002/hbm.21220
000012584 909CO $$ooai:juser.fz-juelich.de:12584$$pVDB
000012584 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000012584 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000012584 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000012584 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000012584 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000012584 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000012584 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000012584 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000012584 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000012584 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000012584 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000012584 9141_ $$y2012
000012584 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000012584 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000012584 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000012584 970__ $$aVDB:(DE-Juel1)124269
000012584 980__ $$aVDB
000012584 980__ $$aConvertedRecord
000012584 980__ $$ajournal
000012584 980__ $$aI:(DE-Juel1)INM-2-20090406
000012584 980__ $$aUNRESTRICTED