001     12584
005     20210129210556.0
024 7 _ |2 pmid
|a pmid:21438078
024 7 _ |2 DOI
|a 10.1002/hbm.21220
024 7 _ |2 WOS
|a WOS:000299071200012
037 _ _ |a PreJuSER-12584
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)131693
|a Langner, R.
|b 0
|u FZJ
245 _ _ |a Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile and visual stimulus detection
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2012
300 _ _ |a 398 - 418
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 2398
|a Human Brain Mapping
|v 33
|x 1065-9471
|y 2
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Sustained responsiveness to external stimulation is fundamental to many time-critical interactions with the outside world. We used functional magnetic resonance imaging during speeded stimulus detection to identify convergent and divergent neural correlates of maintaining the readiness to respond to auditory, tactile, and visual stimuli. In addition, using a multimodal condition, we investigated the effect of making stimulus modality unpredictable. Relative to sensorimotor control tasks, all three unimodal detection tasks elicited stronger activity in the right temporo-parietal junction, inferior frontal cortex, anterior insula, dorsal premotor cortex, and anterior cingulate cortex as well as bilateral mid-cingulum, midbrain, brainstem, and medial cerebellum. The multimodal detection condition additionally activated left dorsal premotor cortex and bilateral precuneus. Modality-specific modulations were confined to respective sensory areas: we found activity increases in relevant, and decreases in irrelevant sensory cortices. Our findings corroborate the modality independence of a predominantly right-lateralized core network for maintaining an alert (i.e., highly responsive) state and extend previous results to the somatosensory modality. Monitoring multiple sensory channels appears to induce additional processing, possibly related to stimulus-driven shifts of intermodal attention. The results further suggest that directing attention to a given sensory modality selectively enhances and suppresses sensory processing-even in simple detection tasks, which do not require inter- or intra-modal selection.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Acoustic Stimulation
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Attention: physiology
650 _ 2 |2 MeSH
|a Brain Mapping
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Photic Stimulation
650 _ 2 |2 MeSH
|a Reaction Time: physiology
650 _ 2 |2 MeSH
|a Somatosensory Cortex: physiology
650 _ 2 |2 MeSH
|a Touch Perception
700 1 _ |0 P:(DE-Juel1)VDB18937
|a Kellermann, T.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)131678
|a Eickhoff, S. B.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB131
|a Boers, F.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Chatterjee, A.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Willmes, K.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Sturm, W.
|b 6
773 _ _ |0 PERI:(DE-600)1492703-2
|a 10.1002/hbm.21220
|g Vol. 33, p. 398 - 418
|p 398 - 418
|q 33<398 - 418
|t Human brain mapping
|v 33
|x 1065-9471
|y 2012
856 7 _ |u http://dx.doi.org/10.1002/hbm.21220
909 C O |o oai:juser.fz-juelich.de:12584
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
970 _ _ |a VDB:(DE-Juel1)124269
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21