| Hauptseite > Publikationsdatenbank > Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile and visual stimulus detection > print |
| 001 | 12584 | ||
| 005 | 20210129210556.0 | ||
| 024 | 7 | _ | |2 pmid |a pmid:21438078 |
| 024 | 7 | _ | |2 DOI |a 10.1002/hbm.21220 |
| 024 | 7 | _ | |2 WOS |a WOS:000299071200012 |
| 037 | _ | _ | |a PreJuSER-12584 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |0 P:(DE-Juel1)131693 |a Langner, R. |b 0 |u FZJ |
| 245 | _ | _ | |a Staying responsive to the world: Modality-specific and -nonspecific contributions to speeded auditory, tactile and visual stimulus detection |
| 260 | _ | _ | |a New York, NY |b Wiley-Liss |c 2012 |
| 300 | _ | _ | |a 398 - 418 |
| 336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |
| 336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
| 336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
| 336 | 7 | _ | |2 BibTeX |a ARTICLE |
| 336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
| 336 | 7 | _ | |2 DRIVER |a article |
| 440 | _ | 0 | |0 2398 |a Human Brain Mapping |v 33 |x 1065-9471 |y 2 |
| 500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
| 520 | _ | _ | |a Sustained responsiveness to external stimulation is fundamental to many time-critical interactions with the outside world. We used functional magnetic resonance imaging during speeded stimulus detection to identify convergent and divergent neural correlates of maintaining the readiness to respond to auditory, tactile, and visual stimuli. In addition, using a multimodal condition, we investigated the effect of making stimulus modality unpredictable. Relative to sensorimotor control tasks, all three unimodal detection tasks elicited stronger activity in the right temporo-parietal junction, inferior frontal cortex, anterior insula, dorsal premotor cortex, and anterior cingulate cortex as well as bilateral mid-cingulum, midbrain, brainstem, and medial cerebellum. The multimodal detection condition additionally activated left dorsal premotor cortex and bilateral precuneus. Modality-specific modulations were confined to respective sensory areas: we found activity increases in relevant, and decreases in irrelevant sensory cortices. Our findings corroborate the modality independence of a predominantly right-lateralized core network for maintaining an alert (i.e., highly responsive) state and extend previous results to the somatosensory modality. Monitoring multiple sensory channels appears to induce additional processing, possibly related to stimulus-driven shifts of intermodal attention. The results further suggest that directing attention to a given sensory modality selectively enhances and suppresses sensory processing-even in simple detection tasks, which do not require inter- or intra-modal selection. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK409 |2 G:(DE-HGF) |x 0 |c FUEK409 |a Funktion und Dysfunktion des Nervensystems (FUEK409) |
| 536 | _ | _ | |0 G:(DE-HGF)POF2-89571 |a 89571 - Connectivity and Activity (POF2-89571) |c POF2-89571 |f POF II T |x 1 |
| 588 | _ | _ | |a Dataset connected to Pubmed |
| 650 | _ | 2 | |2 MeSH |a Acoustic Stimulation |
| 650 | _ | 2 | |2 MeSH |a Adult |
| 650 | _ | 2 | |2 MeSH |a Attention: physiology |
| 650 | _ | 2 | |2 MeSH |a Brain Mapping |
| 650 | _ | 2 | |2 MeSH |a Female |
| 650 | _ | 2 | |2 MeSH |a Humans |
| 650 | _ | 2 | |2 MeSH |a Image Processing, Computer-Assisted |
| 650 | _ | 2 | |2 MeSH |a Magnetic Resonance Imaging |
| 650 | _ | 2 | |2 MeSH |a Photic Stimulation |
| 650 | _ | 2 | |2 MeSH |a Reaction Time: physiology |
| 650 | _ | 2 | |2 MeSH |a Somatosensory Cortex: physiology |
| 650 | _ | 2 | |2 MeSH |a Touch Perception |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB18937 |a Kellermann, T. |b 1 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)131678 |a Eickhoff, S. B. |b 2 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB131 |a Boers, F. |b 3 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Chatterjee, A. |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Willmes, K. |b 5 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Sturm, W. |b 6 |
| 773 | _ | _ | |0 PERI:(DE-600)1492703-2 |a 10.1002/hbm.21220 |g Vol. 33, p. 398 - 418 |p 398 - 418 |q 33<398 - 418 |t Human brain mapping |v 33 |x 1065-9471 |y 2012 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1002/hbm.21220 |
| 909 | C | O | |o oai:juser.fz-juelich.de:12584 |p VDB |
| 913 | 2 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 0 |
| 913 | 1 | _ | |0 G:(DE-HGF)POF2-89571 |a DE-HGF |v Connectivity and Activity |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
| 915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
| 915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
| 915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |g INM |k INM-2 |l Molekulare Organisation des Gehirns |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)124269 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|