
Algorithms 2012, 5, 604-628; doi:10.3390/a5040604
OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Laplace–Fourier Transform of the Stretched Exponential
Function: Analytic Error Bounds, Double Exponential
Transform, and Open-Source Implementation “libkww”
Joachim Wuttke

Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at FRM II,
Lichtenbergstraße 1, 85747 Garching, Germany; E-Mail: j.wuttke@fz-juelich.de;
Tel.: +49-89-289-10715

Received: 12 October 2012; in revised form: 13 November 2012 / Accepted: 14 November 2012 /
Published: 22 November 2012

Abstract: The C library libkww provides functions to compute the Kohlrausch–Williams–
Watts function, i.e., the Laplace–Fourier transform of the stretched (or compressed)
exponential function exp(−tβ) for exponents β between 0.1 and 1.9 with double precision.
Analytic error bounds are derived for the low and high frequency series expansions. For
intermediate frequencies, the numeric integration is enormously accelerated by using the
Ooura–Mori double exponential transformation. The primitive of the cosine transform
needed for the convolution integrals is also implemented. The software is hosted at
http://apps.jcns.fz-juelich.de/kww; version 3.0 is deposited as supplementary material to this
article.

Keywords: stretched exponential; Laplace–Fourier transform; numeric integration

Classification: MSC 44A10, 65D30, 65-04

1. Introduction

The C library libkww (please see the Supplementary Material: libkww source archive) provides
functions for computing the Laplace–Fourier transform of the stretched or compressed exponential
function exp(−tβ). It improves upon the previous work [1,2] in several respects: (1) A wider β
range is covered; (2) Results have the full accuracy of double-precision floating-point numbers; (3) The
computation is very fast, thanks to two measures: (a) rigorous error bounds allow to maximally extend

http://apps.jcns.fz-juelich.de/kww

Algorithms 2012, 5 605

the low and high frequency domains where series expansions are used, and (b) the numeric integration
at intermediate frequency is enormously accelerated by using a recent mathematical innovation, the
Ooura–Mori double exponential transform; (4) The implementation is made available in the most
portable way, namely as a C library.

Claims (1)–(3) require some explanation. Dishon et al. published tables for values of β between 0.01
and 2 [1]. However, for β . 0.3, those tables only cover an asymptotic power-law regime, which renders
them practically useless. This will become clear in Section 4.3.

With respect to accuracy, one might argue that a numeric precision of 10−3 or 10−4 is largely sufficient
for fitting spectroscopic data. However, violations of monotonicity at a level δ can trap a fit algorithm in
a haphazard local minimum unless the minimum search step of the algorithm is correspondingly set to
O(δ). Since libkww returns function values with double precision, it can be smoothly integrated into
existing fit routines.

With respect to speed of calculation, one might argue that given today’s computing power this is
no longer a serious concern. However, the Fourier transform of the stretched exponential is often
embedded in a convolution of a theoretical model with an instrumental resolution function, which in
turn is embedded in a nonlinear curve fitting routine. In such a situation, accelerating the innermost loop
is still advantageous.

The implementation in libkww is targeting a IEEE 754 compliant floating-point unit. Returned
function values are accurate within the relative error of the double data type,

δ := 2.2 · 10−16 . 2−52 (1)

Internally, series expansions and trapezoid sums are computed using long double variables,
expecting that this translates at least to 80 bits (extended double) so that floating-point errors are not
larger than

ε := 5.5 · 10−20 & 2−64 (2)

The modest signal-to-noise ratio δ/ε made painstaking fine-tuning of the numeric integration
unavoidable. The good side is that it will be easy to port libkww to other architectures.

Figure 1. Functions Qβ(ω), Vβ(ω), Pβ(ω) for selected values of β. Colored lines have been
obtained by series expansions, solid black lines by numeric integration. Dashed lines have
been computed using analytic expressions for β = 1, 2 (Appendix E).

0.01 0.1 1 10
ω

0.01

0.1

1

Q
β(

ω
) β = 0.3

β = 0.45
β = 0.65
β = 1.0
β = 1.5
β = 2.0

0.01 0.1 1 10
ω

0.01

0.1

1

V
β(

ω
)

0.01 0.1 1 10
ω

0.1

1

P
b(

ω
)

Algorithms 2012, 5 606

This paper, after discussing typical applications (Section 2) and introducing some notation (Section 3),
describes the mathematical foundations of the implemented algorithm in full detail (Sections 4 and
5). Based on this, the application programming interface and some test programs are documented
(Section 6). Exemplary results are shown in Figure 1.

2. Applications

2.1. The Stretched Exponential

The stretched exponential function arises in different mathematical contexts, for instance as Lévy
symmetric alpha-stable distribution, or as the complement of the cumulative Weibull distribution.

In physics, the stretched exponential function is routinely employed to describe relaxation in glasses,
in glass-forming liquids, and in other disordered materials. The earliest known use is by Rudolf
Kohlrausch in 1854 who investigated charge creep in a Leiden jar. He was followed by his son
Friedrich Kohlrausch in 1863 who used the stretched exponential to describe torsional relaxation in
glass wires, thereby improving previous studies by Wilhelm Weber (1841) and his father (1847). In the
modern literature, these early accomplishments are often confounded, and a majority of references to
Poggendorff’s Annalen der Physik und Chemie is incorrect [3].

In 1993, Böhmer et al. [4] listed stretching exponents for over 70 materials, obtained by viscoelastic,
calorimetric, dielectric, optical, and other linear response measurements. Other important compilations,
though tinted by highly personal theoretical views, include a review by Phillips [5], and a book by
Ngai [6]. As of 2011, the Böhmer review has been cited over 1100 times, indicating a huge increase
in the use of the stretched exponential function for describing relaxation phenomena. In the meantime,
it has also become clear that non-exponential relaxation is not limited to supercooled glass-forming
materials but that it also occurs in normal liquids [7–9].

Other physical applications of the stretched exponential function are the time dependence of
luminescence or fluorescence decays [10], and the concentration dependence of diffusion coefficients
and viscosities [11]. In most applications, the exponent is restricted to values β ≤ 1. However, in recent
years some uses of the “compressed” or “squeezed” exponential function with 1 < β < 2 have been
proposed, mostly in protein kinetics [12–14], but also in magnetism [15]. Outside physics, the stretched
exponential function has been found to provide a good fit to various socio-economic statistics, like urban
agglomeration sizes, currency exchange rate variations, or the “success” of scientists, musicians, and
Hollywood blockbusters [16–18].

Hardly ever the stretched exponential is the full story. It usually describes a scaling regime that
extends over a finite, albeit logarithmically large, time range. Mode-coupling theory has provided
one physical way to connect a long-time Kohlrausch asymptote to a short-time regime that satisfies all
conservation laws [19,20]. On the other hand, a stretched exponential function can just be the short-time
limit of a Mittag–Leffler function that leads over towards a power-law at long times [21,22].

Algorithms 2012, 5 607

2.2. The Kohlrausch–Williams–Watts Function

The use of the Laplace–Fourier transform to describe dynamic susceptibilities and scattering
experiments has its foundations in linear response theory. The relations between response functions,
relaxation functions, susceptibilities, correlation functions, and scattering laws are briefly summarized
in Appendix A. For applications in linear viscoelasticity, see [23,24].

In 1970, Williams and Watts introduced the Laplace transform of the stretched exponential function
to describe dielectric response as function of frequency [25]. Their intuition is remarkable, since they
were neither aware of earlier uses of the stretched exponential in the time domain, nor had they the
technical means of actually computing the Fourier transform: based on analytic expressions for β = 1

and β = 0.5, they courageously extrapolated to β = 0.38.
It was noticed soon that series expansions can be used to transform the stretched exponential in the

limit of low or high frequencies [26–28]. Based on this, computer routines were implemented that
complemented these series expansions by explicit integration for intermediate frequencies [1,2]. In
actual fit routines, it was found more convenient to interpolate between tabulated values than to compute
the Laplace transform explicitly [29]. Other experimentalists fit their data with the Havriliak–Negami
function (a Cauchy–Lorentz–Debye spectrum decorated with two fractional exponents) and use
some approximations [30,31] to convert parameters to those of the stretched exponential spectrum.
Such indirect procedures can be made obsolete by a more efficient numeric computation of the
Laplace–Fourier integral.

3. Notation

We write the stretched exponential function in dimensionless form as

fβ(t) := exp
(
−tβ

)
(3)

Motivated by the relations between relaxation, linear response, and dynamic susceptibility (Appendix A),
we define the Laplace transform of fβ as

Fβ(ω) :=

∫ ∞
0

dt eiωt fβ(t) (4)

In most applications, one is interested in either the cosine or the sine transform,

Qβ(ω) := ReFβ(ω)

Vβ(ω) := ImFβ(ω)
(5)

The two-sided Fourier transform of fβ(|t|) is∫ ∞
−∞

dt eiωt fβ(|t|) = 2Qβ(ω) (6)

To compute the convolution of Equation (6) with an experimental resolution function (Appendix B), it is
sometimes advisable to use the primitive of Qβ(ω),

Pβ(ω) :=

∫ ω

0

dω′Qβ(ω′) = ω

∫ ∞
0

dt sinc(ωt)fβ(t) (7)

Algorithms 2012, 5 608

The function Qβ(ω) is even in ω, with

Qβ(0) = Γ(1/β)/β (8)

whereas Vβ(ω) and Pβ(ω) are odd. To simplify the notation, we restrict ourselves to ω > 0 for the
remainder of this paper.

In physics, the stretched exponential function is almost always used with an explicit time constant τ ,

fβ,τ (t) := exp
(
−(t/τ)β

)
(9)

The corresponding transforms can be expressed quite simply by their dimensionless versions:

Fβ,τ (ω) = τFβ(τω)

Pβ,τ (ω) = Pβ(τω)
(10)

4. Series Expansions

4.1. Small-ω Expansion

For small and for large values of ω, Fβ(ω) can be determined from series expansions [1,2,26–28]. For
small ω, we expand exp(iωt) in Equation (4), substitute x = tβ , and use the defining equation of the
gamma function, ∫ ∞

0

dx xµ−1e−x =: Γ(µ) (11)

to one obtain the Taylor series (in [28] traced back to Cauchy 1853):

Fβ(ω) =
1

β

∞∑
k=0

Ak(iω)k (12)

with

Ak :=
Γ((k + 1)/β)

Γ(k + 1)
(13)

Separating real and imaginary parts, we get

Qβ(ω) =
1

β

∞∑
k=0

(−1)kA2kω
2k

Vβ(ω) =
1

β

∞∑
k=0

(−1)kA2k+1ω
2k+1

(14)

The expansion of Pβ is obtained most easily by integrating that of Qβ ,

Pβ(ω) =
1

β

∞∑
k=0

(−1)k
A2k

2k + 1
ω2k+1 (15)

The expansions of Qβ(ω), Vβ(ω), and Pβ(ω) shall be summarized as

Y =
∞∑
k=0

(−1)k
A2k+κ

(2k + 1)µ
ω2k+κ+µ (16)

Algorithms 2012, 5 609

with switches

κ, µ :=


0, 0 for Q
1, 0 for V
0, 1 for P

(17)

All these series are useful only for small ω; otherwise large alternating terms prevent efficient summation.
For β ≥ 1, they converge for all values of ω. For β < 1, they are asymptotic expansions,
which means [32,33] they diverge, but when truncated at the right place they nevertheless provide
useful approximations.

4.2. Large-ω Expansion

A complementary series expansion for large ω can be derived by expanding the exp(−tβ) term in
Equation (4). Using ∫ ∞

0

dt tµ−1eiωt =
Γ(µ)

ωµ
eiµπ/2 (18)

one obtains a series in powers of ω−β (in [28] attributed to Wintner 1941 [34]):

Fβ(ω) = i
∞∑
k=0

(−1)keikβπ/2Bkω
−kβ−1 (19)

with

Bk :=
Γ(kβ + 1)

Γ(k + 1)
(20)

Separating real and imaginary parts,

Qβ(ω) =
∞∑
k=1

(−1)k−1 sin(kβπ/2)Bkω
−kβ−1

Vβ(ω) =
∞∑
k=0

(−1)k cos(kβπ/2)Bkω
−kβ−1

(21)

Instead of Pβ , we compute its complement

P β(ω) := Pβ(∞)− Pβ(ω) (22)

The limit Pβ(∞) = π/2 is obtained most easily through Equation (6). Integration of Equation (21)

P β(ω) =

∫ ∞
ω

dω′Qβ(ω′) (23)

yields

P β(ω) =
∞∑
k=1

(−1)k−1 sin(kβπ/2)
Bk

kβ
ω−kβ (24)

The expansions of Qβ(ω), Vβ(ω), and P β(ω) shall be summarized as

Y = (−1)1−κ
∞∑

k=1−κ

(−1)k sin
(

(kβ + κ)
π

2

)
uk (25)

Algorithms 2012, 5 610

with
uk := Bk(kβ)−µωµ−1−kβ (26)

and with switches κ, µ as defined in Equation (17). To improve the numeric accuracy of the sine
term in Equation (25) for β → 2, the complementary exponent β̄ := 2 − β is introduced so that
(−1)1+k sin(kβπ/2) can be replaced by sin(kβ̄π/2).

For β ≤ 1, these series converge for all ω 6= 0; for β > 1, they are asymptotic expansions. This is
just complementary to the small-ω expansion.

4.3. Cross-Over Frequencies

The leading-order terms in Equations (14) and (21) are power-laws in ω. In a plot of lnQβ or lnVβ

versus lnω, these power-law asymptotes are straight lines that intersect at

ωQ :=

(
βΓ(1 + β) sin(βπ/2)

Γ(1/β)

)1/(1+β)

(27)

and

ωV :=

(
β

Γ(2/β)

)1/2

(28)

For β → 0, both cross-over frequencies go rapidly to zero, with a leading singularity

ωQ,V ∼ β1/β (29)

This explains why the limiting case β → 0 has no practical importance, and it also explains why
previously published tables [1] of Qβ(ω) and Vβ(ω) are useless for small exponents β . 0.3: As these
tables employ the same linear ω grid for all β, for small β they only cover the asymptotic large-ω
power-law regime, and not the nontrivial cross-over regime for which alone a table would be needed.

For β → 2, ωQ goes to zero because of the sine term in Equation (27). This regime, probably of little
practical importance, will be dealt with in Section 5.6.

4.4. Error Bounds and Algorithm

The series (16) and (25) shall be approximated by finite sums

Yn =
n−1∑
k=k0

yk (30)

To control the accuracy of this approximation, we need an analytical bound rn for the truncation error

∆trYn := |Yn − Y | ≤ rn (31)

For the small-ω expansion, in Appendix C the bound rn = |yn| is derived: The truncation error is not
larger than the first neglected term. For the large-ω expansion, a bound is derived in Appendix D:

rn = (sinφ)−nβ−1un (32)

Algorithms 2012, 5 611

with the auxiliary variable

φ :=

{
π/2 if β ≤ 1

π/(2β) if β > 1
(33)

and with un as defined in Equation (26).
To avoid cancellation, the sum (30) is computed using an extended floating-point precision ε, as

described in Section 1. This ensures an upper bound for the total floating-point error of

∆fpYn ≤
n−1∑
k=k0

ε|yk| = εZn (34)

with the sum of absolute values

Zn :=
n−1∑
k=k0

|yk| (35)

Yn is requested to approximate Y with a relative accuracy of δ,

(∆fp + ∆tr)Yn ≤ δ · Yn (36)

which is assured if
εZn + rn

Yn
≤ δ (37)

This leads to the following algorithm:
For each n = k0 + 1, k0 + 2, . . ., compute yn−1, Yn, Zn, and rn. Terminate and return Yn if

Equation (37) is fulfilled. Terminate and return an error code if one of the following conditions is met:

(i) yk is excessively large (approaching the largest floating-point number);
(ii) yk is excessively small (approaching the smallest normalized floating-point number);
(iii) εZn/Yn ≥ δ: alternating terms have cancelled each other to an extent that floating-point errors

may exceed δ;
(iv) this is an asymptotic expansion and rk+1 > rk;
(v) a preset limit n = nlim is reached.

Since yk and rk require in part the same computations, the common factor uk is computed ahead
to avoid the repetition of gamma function evaluations and other costly operations. For the small-ω
expansion, we have just rk = uk and yk = (−1)kuk; for the large-ω expansion, uk is defined in (26).

4.5. Application Domains

Let ωL(β) be the smallest ω at given β for which the small-ω algorithm returns an error code.
Similarly, ωH(β) is the largest ω for which the large-ω expansion fails. Figure 2 shows these six limits,
determined by a simple script (kww findlims, cf. Section 6.4), as function of β. Results for Q
V , and P are very similar. For β < 1, the ωH(β) fluctuate strongly, due to the trigonometric factor
in Equation (25).

For later use (Section 6.3), the ωL,H(β) are approximated by simple functions ω̃L,H(β), defined
piecewise after dividing the β-range [0.1, 2] in two or three sections. Typically, within one section,

Algorithms 2012, 5 612

ω̃L,H(β) is an exponential of a rational function with three or four parameters. Details can be found
in the source kww.c where the fit results are hardcoded. For the fluctuating data at β < 1, ω̃H(β)

approximates the lower bound rather than the full data set.

Figure 2. Frequency limits for the series expansions for a required accuracy δ = 2× 10−16

and a machine precision ε = 1 × 10−19. Orange points represent ωL, green points ωH.
Black lines show the piecewise fits that are hardcoded in libkww to decide whether a series
expansion is tried or whether numeric integration is used from the outset.

0 0.5 1 1.5 2
β

10−9

10−6

10−3

10 0

ω
L,

H

Qβ

0 0.5 1 1.5 2
β

10−9

10−6

10−3

10 0

ω
L,

H

Vβ

0 0.5 1 1.5 2
β

10−9

10−6

10−3

10 0

ω
L,

H

Pβ

5. Numeric Integration

5.1. Notation

The definitions (5) and (7) of Qβ , Vβ , and Pβ can be summarized as

Y =

∫ ∞
0

dt sin(ωt+ νπ)g(t) (38)

with
g(t) := t−µfβ(t) (39)

and

ν, µ :=


1/2, 0 for Q
0, 0 for V
0, 1 for P

(40)

5.2. Integrating on a Double-exponential Grid

Popular approaches to calculate numeric Fourier transforms include straightforward fast Fourier
transform, and Tuck’s simple “Filon-trapezoidal” rule [35]. Both methods evaluate the Fourier integrand
on an equidistant grid tk = k∆t. The Filon rule optimizes the weight of the grid points.

In our application, especially for small β, the decay of g(t) extends over several decades. To limit
the number of grid points that must be taken into account, it is customary to use a decimation algorithm.
A more efficient and perhaps even simpler alternative is the double-exponential transformation. It was
first proposed by Takahasi and Mori in 1974 for the efficient evaluation of integrals with end-point

Algorithms 2012, 5 613

singularities [36,37]. Afterwards, it was adapted to oscillatory functions by Ooura and Mori [38,39].
The key idea is to choose grid points tk close to the zeros of the sine function in Equation (38).

A double-exponential transformation is a monotonous function φ(x) that satisfies

φ(x→ −∞)→ 0 (41)

φ′(x→ −∞)→ 0 double exponentially (42)

φ(x→ +∞)→ x double exponentially (43)

This transformation shall now be applied to the time variable in the Fourier integral Equation (38):

t =
π

ω
φ(k − ν) (44)

yielding

Y =
π

ω

∫ ∞
−∞

dk φ′(k − ν) sin(π(φ(k − ν) + ν))g

(
πφ(k − ν)

ω

)
(45)

It is convenient to abbreviate

ak := πφ(k − ν) (46)

bk := φ′(k − ν) sin(π(φ(k − ν) + ν)) (47)

Ỹ :=
ω

π
Y (48)

The integral Equation (45) shall now be approximated by a sum, using the trapezoidal rule with
stepwidth 1:

Ỹ =
+∞∑

k=−∞

bk g
(ak
ω

)
+ ∆diỸ (49)

where the last term is the discretization error, to be discussed below (Section 5.4). As a second
approximation, we truncate the summation at ±N ,

Ỹ =
+N∑

k=−N

bk g
(ak
ω

)
+ ∆diỸ + ∆trỸ (50)

where the new term is the truncation error, also discussed below. This sum is used in libkww to compute
the KWW function at intermediate frequencies. Since ak and bk do not depend on β and ω, they must be
generated only once, which greatly accelerates repeated evaluations of Equation (50).

In practice, (50) can be well approximated with relatively small N . For k → −∞, condition (42)
ensures that bk goes double exponentially to 0. For k → +∞, condition (43) makes the argument of the
sine function in Equation (47) tend towards πk. If N is integer, then all k are integer as well, and the
sine can be expanded around sin(πk) = 0. In consequence, |bk| goes double exponentially to 0.

Algorithms 2012, 5 614

5.3. Choosing a Double-exponential Transform

To proceed, the double-exponential transformation must be specified. All φ considered by Ooura and
Mori [39] have the form

φ(x) =
x

1− exp (−η(x))
(51)

Inserting this in Equation (47), the sine term can be recast to make bk robust for large k:

bk = φ′(k − ν)(−1)k sin

(
π(k − ν)

eη(k−ν) − 1

)
(52)

Next, the function η shall be chosen. It must fulfill the conditions

η(x→ −∞)→ −∞ exponentially (53)

η(0) = 0 (54)

η(x→ +∞)→∞ exponentially (55)

Condition (54) guarantees that numerator and denominator of Equation (51) have a zero at the same
location x = 0. This singularity is removable; the values

φ(0) =
1

η′(0)
, φ′(0) =

1

2

(
1− η′′(0)

η′(0)2

)
(56)

are needed to compute a0 and b0 for ν = 0. Originally, Ooura and Mori [38] had proposed

ηOM(k) := 2p sinh(hk) (57)

with p = 3 or p = π. The parameter h controls the mesh width in t; it will be determined
below in Equation (65). In a later study, Ooura and Mori suggested a more complicated function η(x)

that copes better with singularities near the real axis [39]. Since our kernel g(t) has no such singularities,
we stay with the simple form Equation (57), extending it however by a linear term that decelerates the
exponential asymptote at equal η′(0):

η(k) := 2p sinh(hk) + 2qhk (58)

Given the poor signal-to-noise ratio δ/ε, it was not possible to find one parameterization for the entire
β, ω domain not covered by series expansions. Therefore, distinct sets of ak and bk are precomputed for
five β ranges, using the parameter set shown in Table 1.

Table 1. Hand-optimized parameters p, q for different β ranges, for use in the kernel η (58)
of the double-exponential transform φ (51).

β p q

0.1. . . 0.15 1.8 0.2
0.15. . . 0.25 1.6 0.4
0.25 . . . 1.0 1.4 0.6
1.0 . . . 1.75 1.0 0.2
1.75 . . . 1.95 0.75 0.2
1.95 . . . 2 0.15 0.4

Algorithms 2012, 5 615

5.4. Truncation Error and Mesh Width

There are three sources of errors: Floating-point cancellation, discretization, and truncation. A bound
for the floating-point error ∆fpỸ can be estimated as in Equation (34). The discretization error will be
controlled by iterative refinement of the grid (Section 5.5).

Truncation errors arise from the introduction of finite summation limits in Equation (50). The
truncation error at the lower summation limit is

∆−trỸ =

∣∣∣∣∫ −N
−∞

dk φ′(k) cos(. . .)g(. . .)

∣∣∣∣ < ∫ −N
−∞

dk |φ′(k)| (59)

Provided φ′(k) does not change its sign for k < −N , the absolute-value operator can be omitted, and
the integral becomes trivial, yielding

∆−trỸ < φ(−N) . Neη(−N) (60)

To obtain a bound for the upper truncation error, we start from the trapezoidal sum:

∆+
trỸ '

∣∣∣∣∣
∞∑

k=N+1

bkg(. . .)

∣∣∣∣∣ (61)

Using Equation (52),

∆+
trỸ <

∞∑
k=N+1+ν

φ′(k)
πN

eη(k) − 1
.

∞∑
k=N+1

πNe−η(k) (62)

The summands decay faster than in a geometric series so that

∆+
trỸ < πNe−η(+N) (63)

similar to Equation (60). Altogether, the truncation error decreases double exponentially with
increasing N . Therefore we can request at very little cost a safety factor of m = 10 or more in the
error bound,

∆trỸ /Ỹ < δ/m (64)

which ensures that truncation contributes almost nothing to the overall error. For the same reason we
must not care about the non-strict (.) estimates in Equations (60) and (62).

To make use of Equation (64), we need a lower bound for Ỹ . From the data shown in Figure 2, we
can infer that the lowest Ỹ that needs to be computed numerically is at β = 0.1, Y = V ; its value is
little above Ỹ0 := 2 · 10−20. The choice Equation (58) ensures the asymptotic behavior η(x) → ±qehx

for x→ ±∞. Thence Equation (64) is satisfied by

h =
1

N
ln

(
1

q
ln

(π + 1)mN

δỸ0

)
(65)

Algorithms 2012, 5 616

5.5. Iterative Integration

The numeric integration is performed by computing the trapezoidal sum (50) in iterations n = 0, 1, . . .

with increasing mesh size Nn and decreasing steps hn,

Ỹn :=
Nn∑

k=−Nn

bnkg

(
ank
ω

)
(66)

In libkww, the simple iteration scheme

Nn = 2nN0 (67)

is used, and hn is set according to Equation (65).
To estimate the floating-point error, we also need the sum of absolute terms

T̃n :=
Nn∑

k=−Nn

|bnk |g
(
ank
ω

)
(68)

The discretization error is estimated by comparing the present with the previous result,

∆diỸ .
∣∣∣Ỹn − Ỹn−1

∣∣∣ (69)

The non-strict less-than symbol in this equation is the weakest point of this entire work, opening the
door for uncontrolled errors. We therefore depend on heuristic evidence that discretization errors almost
never exceed a few δ (Section 6.4). The success criterion is thus

∆fpỸ + ∆diỸ . εT̃n +
∣∣∣Ỹn − Ỹn−1

∣∣∣ ≤ δỸn (70)

If the latter inequality is fulfilled, the algorithm terminates and returns Ỹn. Otherwise, when n reaches a
limit nlim, the iteration exits with an error code.

5.6. Special Case β → 2

Figure 3 shows Qβ(ω) for representative values of β. In the limit β = 2, the cosine transform is just
a Gaussian,

Q2(ω) =

√
π

2
exp

(
−ω2/4

)
(71)

whereas for β . 2 it has a power-law tail

Q2−β̄(ω) ' sin(β̄π/2)Γ(2− β̄)ω−3+β̄ for ω � 1 (72)

This qualitative change is also evident from the high ω expansion (21), which becomes useless at β = 2

where sin(kβπ/2) = 0 for all k. All this is not a problem, but in the ω range between the two series
expansions, the numeric quadrature fails to reach the required accuracy because of cancellation. This
problem can be remediated to a certain degree by transforming not fβ(t) but the difference fβ(t) −
f2(t). The result is then added to the analytic transform Q2(ω). In our implementation, this is done for
1.75 < β < 2. Even then, for β > 1.9 the integration fails for some ω.

Algorithms 2012, 5 617

Figure 3. Red lines: Cosine transform Qβ(ω) close to the Gaussian limit β → 2. Black line:
Gaussian

√
π/4 exp(−ω2/4).

1 10
ω

10−9

10−6

10−3

1
Q

β
(ω

)

β = 1.9

β = 1.999
β = 1.99999

β = 1.9999999

6. Implementation

6.1. Download and Installation

Routines for the computation of Qβ(ω), Vβ(ω) and Pβ(ω) have been implemented in form of a small
library libkww. In order to ensure maximum portability, the programming language C has been chosen.
The source code is published under the terms of the GNU General Public License (GPL); other licenses
can be negotiated when needed. The source distribution is available as a tar archive. Version 3.0 is
deposited as supplementary material to this article. Updates can be found on our institute’s application
server at http://apps.jcns.fz-juelich.de/kww; changes are documented in the file CHANGE LOG, which is
part of the source distribution.

The build procedure is automatized with GNU autotools; the distribution contains all files needed
to build the library and some test programs with the standard command sequence ./configure,
make, sudo make install. The source code resides in the subdirectory lib/. The build process
normally produces a static and a dynamic version of the library libkww, and installs it to the appropriate
location. Besides, a header file kww.h is copied to the appropriate include directory. Subdirectory
test/ contains programs and scripts used for fine-tuning and testing. Subdirectory doc/ provides a
manual page kww (3) in plain old documentation (POD) format. The tools pod2man and pod2html
are required to translate it into Unix manual (∗roff) and HTML formats.

6.2. Application Programming Interface, Error Handling

The application programming interface (API) for computing Qβ(ω), Vβ(ω) and Pβ(ω) can be
summarized as follows:

#include <kww.h> double kwwc (double omega, double beta);

http://apps.jcns.fz-juelich.de/kww

Algorithms 2012, 5 618

double kwws (double omega, double beta);

double kwwp (double omega, double beta);

The letters c and s stand for cosine and sine transform, respectively; p stands for the primitive of the
cosine transform.

If β is outside the allowed range 0.1 ≤ β ≤ 2, an error message is written to stderr, and exit
is called with errno EDOM. For the cosine transform, the range 1.9 < β < 2.0 is allowed but not
supported: failures of the numeric integration in this range will not be considered bugs. If the numeric
integration fails in the non-supported range, kwwc simply returns 0.

A failure of the numeric integration in the supported β range is considered a bug. An error message
is written to stderr, and exit is called with errno ENOSYS. Such failures should be reported
to the author who will try to fix them by fine tuning the double exponential transform, or by slightly
increasing δ. If it turns out that the insufficient signal-to-noise ratio of long double versus double
does not permit to fully exclude occasional failures at isolated ω, β, then the error handling will be
changed in future releases. At any moment, the man page provides the authoritative documentation.

6.3. Low-level Functions

In a few special cases (ω = 0, or β = 2 for the cosine transform), the analytically known return value
is computed immediately. If ω < 0, the absolute value is taken; for the kwws and kwwp, a flag is set
so that the functions can ultimately return Y (ω) = ±Y (|ω|) for ω ≷ 0. In the following, as everywhere
else in this text, we consider only ω > 0.

The domain limits ω̃L,H are hardcoded in functions

double kwwc_lim_low(double b); double kwwc_lim_hig(double b);

and similar for kwws and kwwp. If ω ≤ ω̃L(β) or ω ≥ ω̃H(β), the appropriate series expansion is tried.
If it returns an error code (return value below 0) the computation falls back to numeric integration. If ω
lies between ω̃L and ω̃H, the numeric integration is invoked from the outset.

Series expansions and numeric integration are implemented by the functions

double kwwc_low(double w, double b);

double kwwc_mid(double w, double b);

double kwwc_hig(double w, double b);

and similar for kwws and kwwp. For test purposes, these low-level functions can also be called directly.
Since the algorithms for all three functions are very similar, they are implemented jointly: The above

functions are no more than thin wrappers around the core functions

double kww__low(double w, double b, int kappa, int mu);

double kww__mid(double w, double b, int kind, int mu);

double kww__hig(double w, double b, int kappa, int mu);

where the actual computations are carried out, following the algorithms described above (Sections 4.4,
5.5), with kind = 1− 2ν.

Algorithms 2012, 5 619

6.4. Diagnostic Variables and Test Programs

For optimizing and testing the program, it is important to know which algorithm is chosen for
given ω, β, and how many terms need to be summed. This information is provided by two global
variables in the source file kww.c. Programs linked with libkww can access them using extern

declarations:

extern int kww_algorithm; extern int kww_num_of_terms;

The variable kww algorithm is set to 1, 2, or 3, to indicate whether the low-ω expansion, the numeric
integration, or the high-ω expansion has been used. The variable kww num of terms counts the
evaluations of fβ .

The test program runkww (source code runkww.c in directory test/) allows to call the high-level
functions of Section 6.2 and the low-level functions of Section 6.3 from the command line. If the program
is called without arguments, it prints a help text. Besides the function values Qβ(ω) or Vβ(ω), runkww
also prints the diagnostic variables described above.

The script kww findlims.rb, written in the Ruby programming language, uses bisection to
determine the limits ωL,H where the series expansion first fails.

The program kww countterms tests the numeric integration within a hardcoded β range and for ω
within the limits ω̃L,H, and prints the average number of evaluations of fβ . It has been used to optimize
the parameters p and q of the kernel η of the double-exponential transform φ (Section 5.3).

The script kww checks.rb performs scans in ω at fixed β, or vice versa, and detects points where
the used algorithm or the number of function evaluations has changed. It then checks the continuity of
Y = Q, V, P across this border. Results of numerous test runs confirm that violations of monotonicity
are extremely rare and never exceed a few δ.

Acknowledgements

I thank S. Busch, T. Franosch, D. Korolkov, and T. Voigtmann for feedback on early manuscript
versions, and W. Van Herck for carefully checking the final text.

References

1. Dishon, M.; Weiss, G.H.; Bendler, J.T. Stable Law Densities and Linear Relaxation Phenomena.
J. Res. N. B. S 1985, 90, 27–40.

2. Chung, S.H.; Stevens, J.R. Time-dependent correlation and the evaluation of the stretched
exponential or Kohlrausch-Williams-Watts function. Am. J. Phys. 1991, 59, 1024–1029.

3. Cardona, M.; Chamberlin, R.V.; Marx, W. The history of the stretched exponential function. Ann.
Phys. (Leipzig) 2007, 16, 842–845.

4. Böhmer, R.; Ngai, K.L.; Angell, C.A.; Plazek, D.J. Nonexponential relaxations in strong and fragile
glass formers. J. Chem. Phys. 1993, 99, 4201–4210.

5. Phillips, J.C. Anomalous glass transitions and stretched exponential relaxation in fused salts and
polar organic compounds. Phys. Rev. E 1996, 53, 1732–1739.

6. Ngai, K.L. Relaxation and Diffusion in Complex Systems; Springer: New York, NY, USA, 2011.

Algorithms 2012, 5 620

7. Wiebel, S.; Wuttke, J. Structural relaxation and mode coupling in a non-glassforming liquid:
depolarized light scattering in benzene. New J. Phys. 2002, 4, 56.

8. Torre, R.; Bartolini, P.; Righini, R. Structural relaxation in supercooled water by time-resolved
spectroscopy. Nature 2004, 428, 296–299.

9. Turton, D.A.; Wynne, K. Crossover from Stretched to Compressed Exponential Relaxations in a
Polymer-Based Sponge Phase. J. Chem. Phys. 2009, 131, 201101.

10. Berberan-Santos, M.N.; Bodunov, E.N.; Valeur, B. Mathematical functions for the analysis
of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched
exponential). Chem. Phys. 2005, 315, 171–182.

11. Phillies, G.D.J.; Peczak, P. The ubiquity of stretched-exponential forms in polymer dynamics.
Macromolecules 2002, 21, 214–220.

12. Nakamura, H.K.; Sasai, M.; Takano, M. Scrutinizing the squeezed exponential kinetics observed in
the folding simulation of an off-lattice Go-like protein model. Chem. Phys. 2004, 307, 259–267.

13. Falus, P.; Borthwick, M.A.; Narayanan, S.; Sandy, A.R.; Mochrie, S.G.J. Crossover from Stretched
to Compressed Exponential Relaxations in a Polymer-Based Sponge Phase. Phys. Rev. Lett. 2006,
97, 066102.

14. Hamm, P.; Helbing, J.; Bredenbeck, J. Stretched versus compressed exponential kinetics in α-helix
folding. Chem. Phys. 2006, 323, 54–65.

15. Xi, H.; Franzen, S.; Guzman, J.I.; Mao, S. Degradation of magnetic tunneling junctions caused by
pinhole formation and growth. J. Magn. Magn. Mat. 2007, 319, 60–63.

16. Laherrère, J.; Sournette, D. Stretched exponential distributions in nature and economy: “fat tails”
with characteristic scales. Eur. Phys. J. B 1998, 2, 525–539.

17. Davies, J.A. The individual success of musicians, like that of physicists, follows a stretched
exponential distribution. Eur. Phys. J. B 2002, 27, 445–447.

18. Sinha, S.; Raghavendra, S. Hollywood blockbusters and long-tailed distributions—An empirical
study of the popularity of movies. Eur. Phys. J. B 2004, 42, 293–296.

19. Götze, W.; Sjögren, L. The glass transition singularity. Z. Phys. B 1987, 65, 415–427.
20. Fuchs, M. The Kohlrausch law as a limit solution to mode coupling equations. J. Non-Cryst. Solids

1994, 172–174, 241–247.
21. Metzler, R.; Klafter, J. From stretched exponential to inverse power-law: fractional dynamics,

ColeCCole relaxation processes, and beyond. J. Non-Cryst. Solids 2002, 305, 81–87.
22. Götze, W. Complex Dynamics of Glass-Forming Liquids. A Mode-Coupling Theory; Oxford

University Press: Oxford, UK, 2009.
23. Anderssen, R.S.; Husain, S.A.; Loy, R.J. The Kohlrausch function: properties and applications.

ANZIAM J. 2004, 45, C800–C861.
24. Husain, S.A.; Anderssen, R.S. Modelling the relaxation modulus of linear viscoelasticity using

Kohlrausch functions. J. Non-Newton. Fluid Mech. 2005, 125, 159–170.
25. Williams, G.; Watts, D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple

empirical decay function. Trans. Faraday Soc. 1970, 66, 80–85.

Algorithms 2012, 5 621

26. Williams, G.; Watts, D.C.; Dev, S.B.; North, A.M. Further considerations of non symmetrical
dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday
Soc. 1971, 67, 1323–1335.

27. Lindsey, C.P.; Patterson, G.D. Detailed comparison of the WilliamsC-Watts and Cole-CDavidson
functions. J. Chem. Phys. 1980, 73, 3348–3347.

28. Montroll, E.W.; Bendler, J.T. On Lévy (or stable) distributions and the Williams-Watts model of
dielectric relaxation. J. Stat. Phys. 1984, 34, 129–162.

29. Macdonald, J.R. Accurate fitting of immittance spectroscopy frequency-response data using the
stretched exponential model. J. Non-Cryst. Solids 1997, 212, 95–116.

30. Alvarez, F.; Alegrı́a, A.; Colmenero, J. Relationship between the time-domain Kohlrausch-
Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys. Rev. B 1991,
44, 7306–7312.

31. Alvarez, F.; Alegrı́a, A.; Colmenero, J. Interconnection between frequency-domain Havriliak-
Negami and time-domain Kohlrausch-Williams-Watts relaxation functions. Phys. Rev. B 1993,
47, 125–130.

32. Copson, E.T. Asymptotic Expansions; Cambridge University Press: Cambridge, UK, 1965.
33. Bleistein, N.; Handelsman, R.A. Asymptotic Expansion of Integrals; Dover Publications: London,

UK, 1986.
34. Wintner, A. The singularities of Cauchys distributions. Duke Math. J. 1941, 8, 678–681.
35. Tuck, E.O. A Simple “Filon-trapezoidal” rule. Math. Comput. 1967, 21, 239–241.
36. Mori, M.; Sugihara, M. The double-exponential transformation in numerical analysis. J. Comp.

Appl. Math. 2001, 127, 287–296.
37. Mori, M. Discovery of the double exponential transformation and its developments. Publ. RIMS,

Kyoto Univ. 2005, 41, 897–935.
38. Ooura, T.; Mori, M. The double exponential formula for oscillatory functions over the half infinite

interval. J. Comp. Appl. Math. 1991, 38, 353–360.
39. Ooura, T.; Mori, M. A robust double exponential formula for Fourier-type integrals. J. Comp. Appl.

Math. 1999, 112, 229–241.
40. Kubo, R. The fluctuation-dissipation theorem. Rep. Progr. Phys. 1966, 29, 255–284.
41. Doster, W.; Busch, S.; Gaspar, A.M.; Appavou, M.S.; Wuttke, J.; Scheer, H. Dynamical transition

of protein-hydration water. Phys. Rev. Lett. 2010, 104, 098101.
42. Scarborough, J.B. Numerical Mathematical Analysis; John Hopkins Press: Baltimore, ML, USA,

1930. The statement about usual truncation errors in asymptotic series is on p. 158 of the 2nd
edition (1950), and on p. 164 of the 5th edition (1962).

43. Charlier, C.L. Die Mechanik des Himmels. Zweiter Band; Veit & Comp.: Leipzig, Germany, 1907.
44. NIST Digital Library of Mathematical Functions. Available online: http://dlmf.nist.gov, 7.2.5 and

7.7.3 (accessed on 20 November 2012).
45. GNU Scientific Library, version GSL-1.15 of 6 May 2011, chapter 7.9. Available online: http:

//www.gnu.org/software/gsl/manual/html node/Dawson-Function.html (accessed on 20 November
2012).

http://dlmf.nist.gov
http://www.gnu.org/software/gsl/manual/html_node/Dawson-Function.html
http://www.gnu.org/software/gsl/manual/html_node/Dawson-Function.html

Algorithms 2012, 5 622

Appendix

A. Description of Relaxation in Time and Frequency

The use of the Fourier transform to describe dynamic susceptibilities and scattering experiments
has its foundations in linear response theory. In this appendix, the relations between response
functions, relaxation functions, susceptibilities, correlation functions, and scattering laws shall be
briefly summarized.

The linear response B(t) to a perturbation A(t) can be written as

B(t) =

∫ t

−∞
dt′R(t− t′)A(t′) (73)

Consider first the momentary perturbation A(t) = δ(t). The response is B(t) = R(t). Therefore, the
memory kernel R is identified as the response function.

Consider next a perturbation A(t) = eηtΘ(−t) that is slowly switched on and suddenly switched off
(Θ is the Heaviside step function, η is sent to 0+ at the end of the calculation). For t > 0, one obtains
B(t) = Φ(t) where Φ is the negative primitive of the response function

R(t) = −∂tΦ(t) (74)

Since Φ describes the time evolution after an external perturbation has been switched off, it is called
the relaxation function. Kohlrausch’s stretched exponential function is a frequently used approximation
for Φ(t).

Consider finally a periodic perturbation that is switched on adiabatically, A(t) = exp(−iωt + ηt),
implying again the limit η → 0+. Introducing the dynamic susceptibility

χ(ω) :=

∫ ∞
0

dt ei(ω+iη)tR(t) (75)

the response can be written B(t) = χ(ω)A(t). To avoid the differentiation (74) in the integrand, it is
more convenient to transform the relaxation function,

F (ω) :=

∫ ∞
0

dt eiωt Φ(t) (76)

This is Equation (4), the starting point of the present work.
Partial integration yields a simple relation between χ and F :

χ(ω) = Φ(0) + iωF (ω) (77)

In consequence, the imaginary part of the susceptibility, which typically describes the loss peak in a
spectroscopic experiment, is given by the real part of the Fourier transform of the relaxation function,
Im η = ωRe F (ω).

Up to this point, the only physical input has been Equation (73). To make a connection with
correlation functions, more substantial input is needed. Using the full apparatus of statistical mechanics

Algorithms 2012, 5 623

(Poisson brackets, Liouville equation, Boltzmann distribution, Yvon’s theorem), it is found [40] that for
classical systems

〈A(t)B(0)〉 = kBTΦ(t) (78)

Pair correlation functions are typically measured in scattering experiments. For instance, inelastic
neutron scattering at wavenumber q measures the scattering law S(q, ω), which is the Fourier transform
of the density correlation function,

S(q, ω) =
1

2π

∫ ∞
−∞

dt eiωt〈ρ(q, t)∗ρ(q, 0)〉 (79)

In contrast to Equations (4) and (75), this is a normal, two-sided Fourier transform. If we let
〈ρ(q, t)∗ρ(q, 0)〉 = Φq(t), then the scattering law S(q, ω) is

S(q, ω) =
1

π
Re Fq(ω) (80)

B. Convolution with a Resolution Function

In an inelastic scattering experiment, the observed spectrum is usually well approximated as
a convolution

SR(ω) =

∫ +∞

−∞
dω′R(ω′)S(ω − ω′) (81)

of the physical spectrum S with the instrumental resolution R. Since the observed spectrum and the
observed resolution are both given as histograms on a discrete ω mesh, the convolution integral is
normally computed as a sum

SR(ωi) '
∑
j

∆ωjR(ωj)S(ωi − ωj) (82)

This is a reasonable approximation as long as both S and R vary slowly from one ω channel to the next.
As for R, this condition should be of no concern: in a well designed spectrometer, the channel width is
chosen considerably smaller than the width of R.

However, the condition is not always fulfilled for S. Typical resolution functions have shapes between
Gaussian and Lorentzian. If S is the Fourier transform of a stretched exponential with β < 1, then the
top of S can be much sharper than R, while the wings of S exceed those of R and cause noticeable
quasielastic scattering (see, e.g., Figure 1 in [41]). In such a case, discrete values, especially the
value S(0), are not representative for entire ω channels. Instead of Equation (82), one needs to compute

SR(ωi) '
∑
j

R(ωj)

∫ +∆ωj/2

−∆ωj/2

dω′ S(ωi − ωj + ω′) (83)

The integration must not be carried out explicitly, since libkww provides a function kwwp that directly
yields the primitive Equation (7) of Qβ(ω) = πS(ω), without passing through an evaluation of Qβ . In
consequence, fit programs should compute resolution-broadened Kohlrausch–Williams–Watts spectra as

πSR(ωi) '
∑
j

R(ωj) [P (ωi − ωj + ∆ωj/2)− P (ωi − ωj −∆ωj/2)] (84)

Algorithms 2012, 5 624

C. Truncation Error in Small-ω Expansion

In this appendix, an upper bound for the truncation error of the small-ω expansion (14) is derived,
improving upon a weaker and unproven estimate in [2]. We consider the cosine transform, and write the
Taylor expansion with Lagrange remainder as

Qβ(ω) =
n−1∑
k=0

Q
(k)
β (0)

ωk

k!
+Q

(n)
β (ξ)

ωn

n!
(85)

with 0 ≤ ξ ≤ ω. Going back to the definitions (5) and (4), we have∣∣∣Q(n)
β (ξ)

∣∣∣ =
∣∣∣Re F (n)

β (ξ)
∣∣∣

≤
∣∣∣F (n)

β (ξ)
∣∣∣

=

∣∣∣∣ dn

dξn

∫ ∞
0

dt eiξte−t
β

∣∣∣∣
=

∣∣∣∣∫ ∞
0

dt (it)neiξte−t
β

∣∣∣∣
≤

∫ ∞
0

dt
∣∣∣(it)neiξte−t

β
∣∣∣

=

∫ ∞
0

dt tne−t
β

=
∣∣∣F (n)

β (0)
∣∣∣

(86)

The coefficients Q(k)
β (0) in Equation (85) are zero for odd k. Therefore we are free to choose n even. In

this case, the upper bound derived in Equation (86) equals |Q(n)
β (0)| so that we have∣∣∣∣Q(n)

β (ξ)
ωn

n!

∣∣∣∣ ≤ ∣∣∣∣Q(n)
β (0)

ωn

n!

∣∣∣∣ (87)

In conclusion, the truncation error is not larger than the first neglected term. This proof can be easily
transcribed for the sine transform Vβ , and for the primitive of Qβ ,

Pβ(ω) =
n−1∑
k=0

Q
(k)
β (0)

ωk+1

(k + 1)!
+Q

(n)
β (ξ)

ωn+1

(n+ 1)!
(88)

D. Truncation Error in Large-ω Expansion

In this appendix, an upper bound for the truncation error of the large-ω expansion (21) is derived. The
following two unproven statements of [2] turn out to be wrong: (i) the most accurate results are obtained
by truncating the summation before the smallest term; and (ii) the truncation error is less than twice the
first neglected term.

We specialize again to the cosine transform Qβ(ω). If we choose β = 4/3 the oscillatory factor
sin(kβπ/2) in Equation (21) is zero for k = 3. If the statements of [2] were correct, then we could stop

Algorithms 2012, 5 625

the summation at k = 2 with a truncation error of zero for all values of ω. This is obviously wrong.
A correct truncation criterion can only be based on the amplitudes Bk; it must disregard the oscillating
prefactor sin(kβπ/2).

But even after omitting oscillatory factors the two statements are unfounded. In [2] they are underlaid
by a reference to a specific page in a book on numerical analysis [42]. However, that page only says “the
error committed is usually less than twice the first neglected term”, followed by a reference to a specific
page in a 1907 book on Celestial Mechanics [43]. Going back to this source, we find a rigorous theorem,
which however holds only under very restrictive conditions not fulfilled here.

Therefore we have to restart from scratch. We will simplify an argument of Wintner [34], and
generalize it to cover not only the convergent case β ≤ 1 but also the asymptotic expansion for β > 1.

Substituting s = ωt, the Fourier integral (4) takes the form

Fβ(ω) = ω−1

∫ ∞
0

ds exp
(
is− ω−βsβ

)
(89)

We consider the cosine transform Qβ(ω) = Re Fβ(ω), which we rewrite as Qβ(ω) = G(ω−β)/ω,
introducing the functions

G(x) := Re
∫ ∞

0

ds γ(s, x, 0) (90)

and
γ(s, x, a) := sa exp

(
is− xsβ

)
(91)

The Taylor expansion of G(x), including the Lagrange remainder, reads

G(x) =
n−1∑
k=0

G(k)(0)
xk

k!
+G(n)(ξ)

xn

n!
(92)

with 0 ≤ ξ ≤ x and

G(k)(ξ) = (−1)k Re
∫ ∞

0

ds γ(s, ξ, kβ) (93)

Now, we choose an integration path C in the complex plane consisting of two line segments, s and seiφ,
and two arcs, reiϕ and Reiϕ, with 0 < r ≤ s ≤ R < ∞ and 0 ≤ ϕ ≤ φ ≤ π/2 as shown in Figure 4.
The integral of γ along this path is zero: ∫

C

dz γ(z, x, a) = 0 (94)

Algorithms 2012, 5 626

The contributions of the two arcs tend to 0 as r → 0 and R → ∞. Hence the contributions of the two
line segments have equal modulus. This allows us to obtain the following bounds:

∣∣G(n)(ξ)
∣∣ =

∣∣∣∣(−1)n Re
∫ ∞

0

ds γ(s, ξ, nβ)

∣∣∣∣
≤

∣∣∣∣∫ ∞
0

ds γ(s, ξ, nβ)

∣∣∣∣
=

∣∣∣∣∫ ∞
0

ds γ(seiφ, ξ, nβ)

∣∣∣∣
≤

∫ ∞
0

ds
∣∣γ(seiφ, ξ, nβ)

∣∣
=

∫ ∞
0

ds
∣∣snβeiφnβ exp

(
iseiφ − ξsβeiφβ

)∣∣
=

∫ ∞
0

ds snβ exp
(
−s sinφ− ξsβ cos(φβ)

)

(95)

At this point we choose φ as in Equation (33), which ensures cos(φβ) ≥ 0. The bound

∣∣G(n)(ξ)
∣∣ ≤ ∫ ∞

0

ds snβ exp (−s sinφ) (96)

is independent of ξ. The integral is the same as in Equation (11). So we obtain bounds for the truncation
error of G(x) ∣∣G(n)(ξ)

∣∣ ≤ Γ(nβ + 1)

(sinφ)nβ+1
(97)

and of Qβ(ω),

rn =
1

ω

Γ(nβ + 1)

(sinφ)nβ+1

ω−nβ

n!
=

Bnω
−nβ−1

(sinφ)nβ+1
=

un

(sinφ)nβ+1
(98)

By taking the imaginary part instead of the real part in Equation (90) the argument is readily adapted to
the sine transform, and the same bound Equation (98) is obtained.

Algorithms 2012, 5 627

Figure 4. Integration path C in the complex plane used to compute an upper bound for
G(k)(ξ).

Re z

Im z

C

r R

φ
s

seiφ

For the complementary primitive of Q, we make use of G(0)(0) to write

P β(ω) =

∫ ∞
ω

dω′
G(ω′−β)

ω′
=

n−1∑
k=1

G(k)(0)
ω−kβ

k! kβ
+G(n)(ξ)

ω−nβ

n!nβ
(99)

so that we can use the same bound for |G(n)(ξ)| as before in Equation (97). This yields a bound for the
truncation error of P ,

rn =
Γ(nβ + 1)

(sinφ)nβ+1

ω−nβ

n!nβ
=

Bnω
−nβ

nβ(sinφ)nβ+1
=

un

(sinφ)nβ+1
(100)

E. Analytic Solutions for β = 1, 2

Just for reference, let us note the analytic solutions for β = 1, 2:

Q1(ω) =
1

π

1

1 + ω2
, Q2(ω) =

√
π

2
exp

(
−ω

2

4

)
V1(ω) =

1

π

ω

1 + ω2
, V2(ω) = FDawson

(ω
2

)
P1(ω) =

1

π
arctan(ω), P2(ω) =

π

2
erf
(ω

2

)
(101)

with the Dawson’s integral [44]

FDawson(x) := exp(−x2)

∫ x

0

dt exp(t2) (102)

Algorithms 2012, 5 628

available in the GNU Scientific Library [45]. Analytic solutions also exist for β = 1/2; they involve
Fresnel integrals and the Faddeeva function (complex complementary error function) [25].

c© 2012 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Applications
	The Stretched Exponential
	The Kohlrausch�Williams�Watts Function

	Notation
	Series Expansions
	Small- Expansion
	Large- Expansion
	Cross-Over Frequencies
	Error Bounds and Algorithm
	Application Domains

	Numeric Integration
	Notation
	Integrating on a Double-exponential Grid
	Choosing a Double-exponential Transform
	Truncation Error and Mesh Width
	Iterative Integration
	Special Case 2

	Implementation
	Download and Installation
	Application Programming Interface, Error Handling
	Low-level Functions
	Diagnostic Variables and Test Programs

	Acknowledgements
	Appendix
	Description of Relaxation in Time and Frequency
	Convolution with a Resolution Function
	Truncation Error in Small- Expansion
	Truncation Error in Large- Expansion
	Analytic Solutions for =1,2

