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The emergent fluctuating hydrodynamics of the multiparticle collision dynamics (MPC) approach, a particle-

based mesoscale simulation technique for fluid dynamics, is analyzed theoretically and numerically. We focus on

the stochastic rotation dynamics implementation of the MPC method. The fluid is characterized by its longitudinal

and transverse velocity correlation functions in Fourier space and velocity autocorrelation functions in real space.

Particular attention is paid to the role of sound, which leads to piecewise negative correlation functions. Moreover,

finite system-size effects are addressed with an emphasis on the role of sound. Analytical expressions are provided

for the transverse and longitudinal velocity correlations, which are derived from the linearized Landau-Lifshitz

Navier-Stokes equation adopted for an isothermal MPC fluid. The comparison of the analytical results with

simulations shows excellent agreement above a minimal length scale. The simulations indicate a breakdown in

hydrodynamics on length scales smaller than this minimal length. This demonstrates that we have an excellent

analytical description and understanding of the MPC method and its limitations in terms of time and length

scales.
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I. INTRODUCTION

The desire to bridge the disparate time, length, and energy

scales of soft matter and biological systems has stimulated the

development of various mesoscale simulation techniques. A

particularly appealing method is the multiparticle collision

dynamics (MPC) approach proposed by Malevanets and

Kapral [1,2]. MPC is a particle-based simulation technique,

which incorporates thermal fluctuations, provides hydrody-

namic correlations, and is easily coupled with other simulation

techniques, such as molecular dynamics simulations for

embedded particles [3,4]. MPC proceeds in two steps—a

streaming and a collision step. Collisions occur at fixed discrete

time intervals, and although space is discretized into cells to

define the multiparticle collision environment, both particle

coordinates and velocities are continuous variables. Various

schemes for the collision interaction have been proposed [1–7].

The original method, which employs rotation of relative

velocities, is often denoted as stochastic rotation dynamics

(SRD) [1–6].

The MPC approach has successfully been applied to a broad

range of soft matter systems, such as colloids [1,3,4,8–15] and

polymers [3,4,16–19] under equilibrium conditions. Similar

nonequilibrium properties have been studied for colloids

[7,20–26], polymers [19,27–34], vesicles [35], and cells

[36,37] in flow fields, colloids in viscoelastic fluids [38], as

well as for self-propelled spheres [39–41], rods [3,42], and

other swimming objects [43–45]. Moreover, extensions have

been proposed for fluids with nonideal equations of state [46]

and mixtures [47]. The simulation of such systems is often

rather demanding in terms of computational resources since

it can involve as much as 104–106 embedded particles and

106–109 MPC particles. Hence, such systems can only be

studied on massively parallel platforms [19,48].

In this article, we discuss the hydrodynamic properties

of the SRD version of a MPC solvent. For an analytical

description of the fluid, we adopt a fluctuating hydrodynamic

approach based on the linearized Landau-Lifshitz

Navier-Stokes equation, i.e., thermal fluctuations are

taken into account. Since the stress tensor of the MPC fluid

is nonsymmetric [11,49–53], adjustments of the fluctuating

stress tensor are necessary. By comparing theoretical with

simulation results, we want to achieve a detailed understanding

of the hydrodynamic behavior of the fluid on a broad range of

length and time scales. As is well known, in MPC, hydrody-

namics certainly breaks down on the length scale of a collision

cell. However, less evident is how the smallest hydrodynamic

length scale depends on the interval between MPC collisions.

Another aspect is the compressibility of the MPC fluid. We

want to characterize the influence of sound on the longitudinal

current correlations and the MPC-particle velocity autocorre-

lation function. For micrometer-size colloids in water, there

is a clear separation of the sonic time scale τc from the

viscous time scale τν ; since τc ≪ τν , sound effects can be

neglected. However, recent theoretical [54] and simulation

papers [15] reveal that sonic and viscous effects interfere and

give rise to an effect denoted as backtracking. Then, the fluid

or embedded particle velocity correlation functions no longer

decay monotonically but may even become negative, exhibit-

ing viscoelasticlike behavior. Such effects appear, specifically

for compressible fluids, when the sonic time scale becomes

comparable to the viscous time scale. Indeed, experiments

on colloidal systems revealed fluid-induced correlations on

time scales t < τν [55,56], which are attributed to sonic

effects.

A quantitative characterization of a fluid and, in particular,

the MPC fluid, is useful in several respects. A particular

example is the appearance of screening of hydrodynamic inter-

actions in semidilute polymer solutions [57]. Understanding of

the fluid behavior is a prerequisite for interpreting the complex

polymer dynamics, which is intimately coupled to the fluid.

In that respect, by its particle nature, MPC provides access to

both the polymer and the fluid dynamics.

The paper is organized as follows: In Sec. II, the MPC

method is briefly described, and adopted parameters are
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stated. The fluctuating hydrodynamic approach is outlined

in Sec. III. Longitudinal and transverse velocity correlation

functions are calculated, in particular, for a periodic system.

MPC fluid velocity correlation functions are presented and

are compared with theoretical predictions in Sec. IV. Finally,

Sec. V summarizes our findings.

II. MODEL

In MPC [1–4], the solvent is modeled by point particles,

which move ballistically (streaming) between local multipar-

ticle collisions, an imposed stochastic process. We consider a

system of N particles of mass m in a periodic system of volume

V = L3. During the streaming step, the particles change their

positions r i(t) according to

r i(t + h) = r i(t) + hvi(t), (1)

where t is the time, h is the collision time, vi(t) is the velocity

of particle i, and i = 1, . . . ,N . For the collisional interaction,

the simulation box is divided into cubic collision cells of side

length a. In the SRD version of MPC, the relative velocity of

each particle, with respect to the center-of-mass velocity of the

cell, is rotated by a fixed angle α around a randomly oriented

axis,

vi(t + h) = vi(t) + [R(α) − E][vi(t) − vcm(t)]. (2)

R(α) is the rotation matrix, E is the unit matrix, and

vcm =
1

Nc

Nc
∑

j=1

vj (3)

is the center-of-mass velocity of the particles in the cell of

particle i, and Nc is the total number of solvent particles in

that cell [1–4]. In its original versions, MPC breaks Galilean

invariance [1,2,5]. To ensure Galilean invariance, a random

shift is performed at every collision step [5]. In a collision step,

mass, momentum, and energy are conserved, which leads to

the buildup of correlations between the particles and gives rise

to hydrodynamic interactions.

We consider isothermal rather than isoenergetic systems

because we are typically interested in nonequilibrium systems

where temperature has to be controlled. A constant tempera-

ture is achieved by a local Maxwellian thermostat where we

scale the relative velocities within a collision cell according

to the Maxwell-Boltzmann scaling (MBS) method [58]. In

the MBS method, an energy value is taken from the known

distribution function (Ŵ distribution) of the kinetic energy of

a collision cell. The ratio of this energy and the actual kinetic

energy determines the scale factor. This procedure yields a

local Maxwellian distribution of relative velocities both in

equilibrium and in nonequilibrium simulations [58].

The simulations are performed with the rotation angle

α = 130◦ and mean number of particles 〈Nc〉 = 10 per

collision cell. The collision times h/
√

ma2/(kBT ) = 1, 0.5,

0.1, 0.05, 0.02, and 0.01 are used, which correspond to the

viscosities η/
√

mkBT/a4 = 5.78, 4.07, 8.7, 16.7, 41.2, and

82.2, respectively. The length of the simulation box is L = 60a

if not otherwise stated.

III. FLUCTUATING HYDRODYNAMICS

As shown in Refs. [1–3,49–51], the hydrodynamic prop-

erties of the MPC fluid can be described by the linearized

Navier-Stokes equations on sufficiently large length and time

scales. For an isothermal fluid system, mass and momentum

conservation are expressed by the continuity equation and the

Navier-Stokes equations,

∂

∂t
ρ + ∇ · (ρv) = 0, (4)

ρ

[

∂

∂t
v + (v · ∇)v

]

= ∇ · σ + f . (5)

Here, ρ = ρ(r,t) denotes the mass density of the fluid, v =
v(r,t) denotes the fluid velocity field at position r in space

at time t, f is a volume force, which we set to zero in the

following, and σ is the stress tensor.

The viscous stress tensor of a MPC fluid in d dimensions

consists of a symmetric kinetic stress tensor σ k
αβ and a

nonsymmetric collisional stress tensor σ c
αβ where

σ k
αβ = ηk

[

∂vβ

∂rα

+
∂vα

∂rβ

−
2

d
δαβ

∑

α′

∂vα′

∂rα′

]

, (6)

σ c
αβ = ηc ∂vα

∂rβ

, (7)

as discussed in Refs. [49,50,52] with the collisional (ηc) and

kinetic (ηk) parts of the MPC fluid viscosity η = ηk + ηc [3,4,

59]. α,β,α′,β ′ ∈ {x,y,z} denote the Cartesian directions. The

total stress tensor can then be written as [50–52]

σαβ =
(

ηk +
1

2

d

d − 1
ηc

)

[

∂vβ

∂rα

+
∂vα

∂rβ

−
2

d
δαβ

∑

α′

∂vα′

∂rα′

]

+
1

2

d − 2

d − 1
ηc

[

∂vα

∂rβ

−
∂vβ

∂rα

]

− pδαβ + σR
αβ, (8)

up to a tensor of vanishing divergence, which, consequently,

does not appear in linearized Navier-Stokes equations. p

denotes the hydrostatic pressure, and σR
αβ accounts for the

thermal fluctuations in the fluid [60–62]. We would like to

emphasize two points. First of all, the stress tensor (8) is sym-

metric in two dimensions. Second, we set the bulk viscosity

to zero. Our simulations of three-dimensional systems yield

very small and, hence, negligible values for the bulk viscosity.

Similarly, in Ref. [51], a negligible bulk viscosity was found for

two-dimensional systems. This is consistent with the general

expectation that the bulk viscosity is zero for ideal monatomic

gases [63,64].

The stochastic process for σ
R is assumed to be Gaussian

and Markovian with the moments,

〈σR〉 = 0,
(9)

〈

σR
αβ(r,t)σR

α′β ′(r,t)
〉

= 2kBT ηαβα′β ′δ(r − r ′)δ(t − t ′),

and

ηαβα′β ′ = ηδαβ ′δβα′ +
1

d − 1
[η + (d − 2)ηk]δαα′δββ ′

−
1

d − 1

[

η +
d − 2

d
ηk

]

δαβδα′β ′ . (10)
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Since the stress tensor is nonsymmetric, σ
R is also

nonsymmetric. In Eq. (10), we, therefore, extend the

correlation functions, corresponding to a symmetric stress

tensor [60–62,65], to our nonsymmetric case. The correlation

functions of Refs. [60–62] for angular momentum conserving

fluids are recovered for ηc = 0 and η = ηk. Moreover, these

correlation functions are also recovered in d = 2 without any

further assumption.

With the stress tensors (6), (7), or (8), Eq. (5) turns into the

linearized Landau-Lifshitz Navier-Stokes equation [60],

ρ
∂

∂t
v = −∇p + η �v +

(

d − 2

d

)

ηk
∇(∇ · v) + f R, (11)

at low Reynolds numbers. For convenience, we introduce the

random force f R(r,t) = ∇ · σ
R . In d = 2, Eq. (11) reduce

to the well-known equation for an incompressible fluid [60].

Since ∇ · v may not be zero, this, however, does not necessarily

correspond to an incompressible fluid. In three dimensions, the

nonsymmetric stress tensor leads to a term, which contributes

to sound propagation and solely depends on the kinetic

viscosity.

In the following, we will consider three-dimensional

systems. Taking the divergence of Eq. (11), we arrive at the

equation,

�p −
1

c2

∂2p

∂t2
= ∇ ·

(

η �v +
ηk

3
∇(∇ · v) + f R

)

, (12)

within linearized hydrodynamics. The second derivative with

respect to time on the left-hand side follows from Eq. (4)

together with the ideal gas equation of state, which applies

to the MPC fluid. c =
√

kBT/m is the isothermal velocity

of sound of the MPC fluid. To solve Eqs. (11) and (12), we

perform Fourier transformations. Since we want to compare

the analytical results with computer simulations, we adopt a

discrete Fourier transformation in space, i.e., we use

v(r,t) =
1

2π

∑

k

∫

v̂(k,ω)e−ik·reiωtdω, (13)

v̂(k,ω) =
1

V

∫

v(r,t)eik·re−iωtd3r dt, (14)

with kα = 2πnα/L and nα ∈ Z\{0}. This yields

iωρv̂ = ikp̂ − ηk2
v̂ −

ηk

3
k2Pv̂ + f̂

R
,

(15)
(

ω2

c2
− k2

)

p̂ = ik ·
(

ηk2
v̂ +

ηk

3
k2Pv̂ − f̂

R
)

,

where P is a projection operator with the components

Pαβ = kαkβ/k2, which projects a vector along the direction

of k, and k = |k|. With the splitting v̂ = v̂
L + v̂

T into a

longitudinal v̂
L and transverse part v̂

T with respect to k, i.e.,

v̂ · k = v̂Lk and v̂
T · k = 0, Eqs. (15) yield

v̂(k,ω) = (Q̂L + Q̂T ) f̂
R
, (16)

with

Q̂L =
(

η̃k2 +
iρ

ω
[ω2 − c2k2]

)−1

P = Q̂LP, (17)

Q̂T = (ηk2 + iρω)−1(E − P) = Q̂T (E − P), (18)

and η̃ = η + ηk/3. Note that, for angular momentum conserv-

ing fluids, η̃ = 4η/3 in d = 3. Otherwise, the same expressions

(17) and (18) are obtained.

In the following, we will need the correlation function

〈f̂ R
α (k,ω)f̂ R

β (k′,ω′)〉 of the random force. Using the definition

of f R(r,t), we find

〈

f̂ R
α (k,ω)f̂ R

β (k′,ω′)
〉

= −
∑

α′,β ′

kα′k′
β ′

〈

σ̂R
αα′ (k,ω)σ̂R

ββ ′ (k
′,ω′)

〉

=
4πkBT

V

∑

α′,β ′

kα′kβ ′ηαα′ββ ′δ(ω + ω′)δk,−k′ . (19)

A. Velocity correlation function

The velocity correlation function 〈v̂(k,ω) · v̂(k′,ω′)〉 in

Fourier space can easily be calculated using Eqs. (16)–(19),

〈v̂(k,ω) · v̂(k′,ω′)〉 =
4πkBT

V
k2(2η|Q̂T |2 + η̃|Q̂L|2)

× δ(ω + ω′)δk,−k′ . (20)

The factor 2 in front of |QT |2 reflects the two transverse

components of vorticity.

The correlation function 〈v(k,t) · v(k′,0)〉 follows by con-

volution,

〈v(k,t) · v(k′,0)〉 =
2kBT k2

V
δk,−k′

×
∫

[2ηQT (k,t − t ′)QT (k′,−t ′)

+ η̃QL(k,t − t ′)QL(k′,−t ′)]dt ′. (21)

Fourier transformation yields

QT (k,t) =
1

ρ
e−νk2t�(t) (22)

for the transverse part, where �(t) is Heaviside’s function and

ν = η/ρ denotes the kinematic viscosity. For the longitudinal

contribution, we obtain the expression,

QL(k,t) =
1

ρ
e−k2 ν̃t/2

×
[

cos(�t) −

√

k2ν̃2

4c2 − k2ν̃2
sin(�t)

]

�(t) (23)

for 4c2/(k2ν̃2) > 1, where � = k2ν̃
√

4c2/(k2ν̃2) − 1/2, and

QL(k,t) =
1

ρ
e−k2 ν̃t/2

×
[

cosh(�t) −

√

k2ν̃2

k2ν̃2 − 4c2
sinh(�t)

]

�(t)

(24)

for 4c2/(k2ν̃2) < 1 with � = k2ν̃
√

1 − 4c2/(k2ν̃2)/2.
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1. Transverse velocity correlation function

With Eq. (20), the transverse velocity correlation function

〈vT (k,t) · v
T (k′,0)〉 can be written as

〈vT (k,t) · v
T (k′,0)〉 =

2kBT η

πV
k2

∫

|Q̂T |2eiωtdω δk,−k′ ,

(25)

in the stationary state. Evaluation of the integral yields

〈vT (k,t) · v
T (−k,0)〉 =

2kBT

ρV
e−νk2|t |. (26)

The time integral of the normalized correlation function

〈vT (k,t) · v
T (−k,0)〉/〈vT (k,0) · v

T (−k,0)〉 yields

T (k,t) =
∫ t

0

e−νk2t ′dt ′ =
1

νk2
(1 − e−νk2t ). (27)

Hence, in the limit t → ∞, T (k) is proportional to the Oseen

tensor [57,66],

O =
1

ηk2
(E − P), (28)

in k space.

2. Longitudinal velocity correlation function

The longitudinal correlation function 〈vL(k,t)vL(k′,0)〉 is

most conveniently obtained by the convolution expression in

Eq. (21), which yields

〈vL(k,t)vL(−k,0)〉

=
kBT

ρV
e−ν̃k2|t |/2

[

cos(�|t |) −

√

k2ν̃2

4c2 − k2ν̃2
sin(�|t |)

]

.

(29)

For 4c2/(k2ν̃) < 1, the hyperbolic functions with the argument

� have to be used as in Eq. (24).

3. Velocity correlation function in real space

The velocity correlation function 〈v(r,t) · v(r ′,0)〉 of the

fluid at a point r at time t and r ′ at t = 0 follows by Fourier

transformation,

〈v(r,t) · v(r ′,0)〉 =
∑

k

〈v(k,t) · v(−k,0)〉e−ik·(r−r ′), (30)

with 〈v(k,t) · v(−k,0)〉 as the sum of the transverse (26)

and longitudinal (29) correlation functions. At t = 0, this

expression reduces to

〈v(r,0) · v(r ′,0)〉 =
3kBT

ρ
δ(r − r ′), (31)

which is the equipartition of kinetic energy. Hence, our

extension of the thermal stress tensor, with the fluctuations

(9), on a nonsymmetric stress tensor satisfies the fluctuation-

dissipation theorem [65,67].

Adopting the Lagrangian description of the fluid where

a fluid element is followed as it moves through space and

time, we additionally average the correlation function over the

distribution of displacements r − r ′. Hence, Eq. (30) turns into

〈v(t) · v(0)〉 =
∑

k

〈v(k,t) · v(−k,0)〉〈e−ik·(r−r ′)〉. (32)

Assuming a diffusive motion of the fluid element with

Gaussian distributed displacements, we find

〈v(t) · v(0)〉
=

∑

k

〈v(k,t) · v(−k,0)〉 exp(−k2〈(r(t) − r(0))2〉/6).

(33)

Here, 〈(r(t) − r(0))2〉 indicates the mean square displacement,

which, in the simplest case, reduces to 〈(r(t) − r(0))2〉 = 6Dt

with the diffusion coefficient D.

In general, the sum over k in Eq. (33) cannot be evaluated

analytically. For the transverse velocity correlation function,

however, we obtain the expression,

〈vT (t) · v
T (0)〉 =

2kBT

ρ(2π )3

∫

e−νk2te−Dk2td3k

=
kBT

4ρ

1

[π (ν + D)t]3/2
, (34)

in the limit of an infinitely large system (L → ∞). Hence, we

find the well-known long-time tail of the transverse velocity

correlation function [54,68–73].

Examples of the velocity correlation function (33) are

displayed in Fig. 1 for an infinitely large and two finite-size

systems where

Cv(t) =
m

kBT
〈v(t) · v(0)〉. (35)

MPC characteristic values are chosen for the kinematic

viscosity and the diffusion coefficient. As shown in Fig. 1(a) for

an infinitely large system, the longitudinal velocity correlation

function assumes negative values, whereas, the transverse

correlation decays according to the power law of Eq. (34).

The sum of both also assumes negative values within a certain

time window [Fig. 1(b)] but asymptotically approaches the

long-time tail (34) because the sound contribution decays

exponentially on that time scale.

The short-time correlation function is determined by con-

tributions from large k values. Hence, we are able to derive an

approximate longitudinal velocity correlation function at short

times by setting � = k2ν̃/2 and (1 − 4c2/(k2ν̃2))−1/2 ≈ 1 +
2c2/(k2ν̃2). Then, Fourier transformation of the correlation

function (29) for an infinite system yields

〈vL(t)vL(0)〉 =
kBT

ρ(2π )3

∫

e−k2(D+ν̃/2)t

[

cosh(k2ν̃/2)

−
(

1 +
2c2

k2ν̃2

)

sinh(k2ν̃/2)

]

d3k

=
kBT

8ρπ3/2

[

1

[(D + ν̃)t]3/2

−
2c2

ν̃2

(

1
√

Dt
−

1
√

(D + ν̃)t

)]

. (36)

This expression gives

t0 =
ν̃2

2c2(D + ν̃)

√
D

√
D + ν̃ −

√
D

(37)

for the time at which the correlation function passes through

zero. The comparison with the full expression provides

excellent agreement for times t in the vicinity of t0 and smaller.
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FIG. 1. (Color online) Magnitudes of the velocity autocor-

relation functions of infinite and finite size systems for the

collision time h/
√

ma2/kBT = 0.02. (a) Black, straight line:

transverse component of an infinitely large system. The posi-

tive longitudinal contribution is displayed as solid curve, red,

whereas, the negative one is shown as dashed curve, light

blue. The inset shows the same curves with a linear y axis.

(b) Black, straight line: Asymptotic correlation function for an

infinite system. The other solid lines indicate the positive parts of

the correlation functions of finite size systems and the dashed lines

their negative parts, with green-blue: L/a = 100 and red-light blue:

1000. The correlation function for L/a = 100 deviates early from the

asymptotic behavior of an infinite system.

The correlation functions for the finite-size systems of

Fig. 1(b) decay exponentially at long times. For such t , the

correlation function is determined by small k values. For

a finite system, the smallest value is k = 2π/L. Hence, the

transverse correlation function decays exponentially as e−t/τd

with τd = L2/[(2π )2(ν + D)] for t > τd , where τd → ∞ for

L → ∞. On shorter time scales t ≪ τd , the curves are hardly

distinguishable for the various size systems. The long-time

oscillations are caused by the longitudinal velocity correlation

function, i.e, by sound. The finite system size leads to a

recurrence of sound waves with a period T = L/c, where

T is the time needed to traverse the simulation box.

IV. MPC SIMULATIONS: RESULTS

The velocity in Fourier space for a periodic system of

discrete particles is

v(k,t) =
1

N

N
∑

i=1

vi(t)e
ik·r i (t), (38)

with the k values given after Eq. (14). With these velocities,

we can calculate the various correlation functions discussed in

Sec. III and can compare them to those of the Stokes equation.

A. Transverse velocity correlation function

Normalized transverse velocity correlation functions,

CT
v (t) = 〈vT (k,t) · v

T (−k,0)〉/〈vT (k,0) · v
T (−k,0)〉 (39)

are displayed in Fig. 2. The correlation functions decay

exponentially, exactly as predicted by Eq. (26). This has been

shown before in Ref. [51] for an isoenergetic system.

To analyze the length-scale dependence of hydrodynamics

in a MPC fluid, we calculate the time integral of the velocity

correlation function [cf. Eq. (27)]. The results for various k

values are presented in Fig. 3. The simulation data agree very

well with the theoretical prediction over the considered range

of k values and for the whole time scale. Even the short-time

behavior at a few MPC collisions only is in excellent agreement

with the theoretical expression. The various curves reach a

plateau value for time scales t > τk = (νk2)−1, which depends

on the particular length scale. The plateau is reached earlier at

smaller length scales, i.e, large k values.

As pointed out in Sec. III A1, the plateau values T (k) =
limt→∞ T (k,t) are related to the Oseen tensor (28). Hence,

we are able to probe the length-scale dependence of hydro-

dynamics in a MPC fluid, i.e., its agreement with the Oseen

prediction. A similar study has been performed in Ref. [74]

for a Lennard-Jones fluid (see also Ref. [75]).
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)

FIG. 2. (Color online) From right to left: transverse velocity

autocorrelation functions of a MPC fluid for k = 2πn/L with

n = 1,2,3 and L/a = 60. The collision time steps are blue, dark

gray: h/
√

ma2/(kBT ) = 0.5; green, light gray: 0.1; and red: 0.01.

The individual curves are hardly distinguishable. The corresponding

theoretical prediction (26) is represented by a dashed line. Inset:

universal dependence on νk2t .
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FIG. 3. (Color online) Time dependence of the integrated trans-

verse velocity correlation function (39). The collision time is

h/
√

ma2/(kBT ) = 0.01 and L/a = 60. From top to bottom, the

dashed lines correspond to the k values: k = 2πn/L, n = 1, . . . ,10.

The solid lines indicate the theoretical expression (27).

Figure 4 depicts the k dependence of T (k) for various

collision time steps h. For sufficiently small k values, T (k)

follows the prediction of the Stokes equation and, hence, shows

the same dependence as the Oseen tensor. Above a certain

value, which depends on the collision time step, T (k) itself

approaches a plateau. Hence, below a certain length scale, no

hydrodynamic interactions are present anymore.

Applying the molecular chaos assumption, the asymptotic

behavior is calculated in the Appendix. As shown in Fig. 4,

the theoretical expression captures the small scale behavior.

A characteristic length scale λc, separating the hydrody-

namic from the nonhydrodynamic regime, is obtained by

the intercept of the Oseen type dependence T (k) = 1/(νk2)
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λ
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FIG. 4. (Color online) Dependence of T (k) = limt→∞ T (k,t)

(27) on the wave number for the collision times �: h/
√

ma2/(kBT ) =
0.01; �: 0.1; �: 0.5; and •: 1.0. The thick solid line indicates the

dependence 1/k2, corresponding to the Oseen tensor. The horizontal

lines are the theoretical predictions for the plateau values of νT (k)

[Eq. (A5)]. The inset shows the theoretical prediction for the

characteristic length scale λc; solid line: Eq. (40) and squares: values

extracted from the simulations.

with the asymptotic dependence T (k) = Tmc(k) = h/2, which

yields

λc = π
√

2νh. (40)

The viscosity of a MPC fluid is dominated by the collisional

part with its dependence ηc ∼ h−1 on collision time in the

fluid regime h → 0 [2–5,50,59,76,77]. Hence, we obtain the

asymptotic minimal characteristic length,

λc = πa

√

γ

6
, (41)

with γ = 2(1 − cos α)(1 − 1/〈Nc〉)/3 [see Eq. (A2)]. This

yields λc ≈ 1.3a for the parameters of Sec. II, consistent with

the expectation that there is no hydrodynamics on length

scales below the collision cell size. In the opposite limit

of large collision times h/
√

ma2/(kBT ) > 1, viscosity is

dominated by ηk, which increases linearly with the collision

time. Hence, λc ∼ h in that regime and increases with the

collision time. With the parameters of Sec. II, we find λc ≈
3.1ah

√

kBT/(ma2).

The dependence of λc on the collision time step is presented

in the inset of Fig. 4. The simulation data are obtained by

the intercept of the function T (k) = 1/(νk2) with constants

fitted to the simulation data for the various h values and for

ka > 10. Evidently, the theoretical expression describes the

experimental data very well.

B. Longitudinal velocity correlation function

Results for the longitudinal velocity correlation

function,

CL
v (k,t) = 〈vL(k,t)vL(−k,0)〉/〈vL(k,0)vL(−k,0)〉 (42)

are presented in Fig. 5. The simulation data agree well

with the theoretical prediction (29) for collision time steps

h/
√

ma2/(kBT ) ≪ 1. Since ηk ≪ η for these collision times,

0 50 100 150 200

t/(ma
2
/k

B
T)

1/2

-1.0

-0.5

0.0

0.5

1.0

C
vL
(k

,t
)

FIG. 5. (Color online) Longitudinal velocity autocorrelation

functions for the collision times red: h/
√

ma2/(kBT ) = 0.01; green:

0.05; blue: 0.1; and light blue: 1.0; k = 2π/L, and L/a = 60. The

thin solid lines are theoretical predictions according to Eq. (29). Solid

lines: the order of the maxima at t/
√

ma2/(kBT ) ≈ 60 corresponds

to bottom to top: h/
√

ma2/(kBT ) = 0.01, 0.05, 0.1, and 1.0.
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η̃ ≈ η, and the decay of the longitudinal velocity correlation

function is governed by the collisional contribution of the vis-

cosity. Yet, η̃ ≈ η reflects the nonsymmetry of the collisional

stress tensor (7), otherwise, η̃ = 4η/3 [60].

We observe some deviations between the simulation results

and the theoretical prediction for h/
√

ma2/(kBT ) � 1 as

shown in Fig. 5. To understand the origin and consequence of

the obtained deviations at large h, we recall that the theoretical

calculations of Sec. III are based on an isothermal system.

This implies a decoupling of the longitudinal momentum

(velocity) current fluctuations from that of the (longitudinal)

energy current fluctuations [78,79]. Note that the transverse

momentum current fluctuations are always decoupled. The

decoupling assumption seems to break down for large collision

time steps, although we employ a local thermostat. As long

as the mean-free path of a MPC particle—it is equal to

hc—is smaller than a collision cell, momentum transfer is

governed by collisional interactions. For larger mean-free

paths, momentum and energy are also transported in the

streaming step. Hence, the system is not (locally) isothermal

anymore. To fully describe the transport properties in this case,

the coupling of the momentum and energy current has to be

taken into account. The modifications of the MPC fluid-density

fluctuations have been studied in Ref. [80] as a function of

the thermalization interval. The authors find an increasing

influence of energy transport on the correlation function with

an increasing interval between the scaling of the velocities.

We would like to emphasize that density correlations for an

adiabatic MPC fluid have been studied in Ref. [51]. Since

we typically apply collision times h/
√

ma2/(kBT ) < 0.1, the

provided description applies.

As is well known and is confirmed by our simulations, the

time integral
∫ ∞

0
CL

v dt vanishes, and the longitudinal mode

does not contribute to the fluid self-diffusion coefficient.

Finally, Fig. 6 shows the spectrum of the longitudinal

velocity autocorrelation function (20). Again, the simulation

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

ω(ma
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^

FIG. 6. (Color online) Spectra ĈL
v (k,ω) of the longitudinal

velocity autocorrelation function (42) for the collision times red,

lower: h/
√

ma2/(kBT ) = 0.01; green, middle: 0.05; and blue, upper:

0.1, and k = 2π/(60a). The lines are obtained from the theoretical

expression (20).

results are well described by the theoretical approach. In

particular, the frequencies at the peak positions ωc = ck

confirm that our systems are isothermal for the considered

collision times.

We also calculated the dynamic structure factor [58,78] of

the MPC fluid. As expected for an isothermal system, there

is no Rayleigh line at ω = 0 but only two Brillouin lines at

ωc = ±ck [51,78,80]. Hence, energy (or heat) diffusion is

suppressed by the applied thermostat.

The quantitative agreement between the theoretical and the

simulation results confirms that the bulk viscosity is either

zero or negligibly small for the considered MPC fluid with

h/
√

ma2/(kBT ) � 0.1 since a non-negligible bulk viscosity

would affect the longitudinal velocity correlation function

[60].
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FIG. 7. (Color online) Symbols: magnitude of the velocity au-

tocorrelation function (35) of a MPC fluid for the collision times

(a) h/
√

ma2/(kBT ) = 0.1 and (b) 0.02. Filled symbols indicate

positive correlation functions, and open symbols indicate negative

correlation functions. Solid lines: the theoretical results are obtained

from Eq. (33) with Eqs. (26) and (29) where solid lines indicate

positive correlation functions, and dashed lines indicate negative

ones.
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C. Velocity correlation function in real space

Velocity correlation functions of a MPC fluid in real space

are presented in Fig. 7 for two collision time steps. The

simulation data are well described by the theoretical expression

Eq. (33) with Eqs. (26) and (29) over several decades in time.

We would like to emphasize that we include the full mean

square displacement of a MPC particle (33) and not simply the

linear dependence on time. The latter yields a slightly different

theoretical curve, in particular, in the vicinity of the minimum.

The theoretical approach even reproduces the oscillations due

to sound at long times. However, we have to introduce an

upper cutoff for the k values. As discussed in Sec. IV A,

the hydrodynamic description of the MPC fluid breaks down

below a certain length scale. To achieve a good fit over a long

time range, the maximum k value is kn = 2πn/60 with n = 16

for h/
√

ma2/(kBT ) = 0.1 and n = 21 for 0.02, respectively.

This corresponds to the lower length scales ≈3.8a and ≈2.9a,

respectively. Both values are somewhat above the theoretically

estimated critical length scale λc ≈ a.

The deviation between the theoretical expression and

the simulation results at short times is also related to the

cutoff in k values. As noted before, the expression for the

theoretical correlation function is determined by large k values

at short times. Here, however, the theoretical and simulation

results deviate because the MPC solvent does not exhibit

hydrodynamic behavior anymore for 2π/λc < k < ∞.

The derivation of a theoretical correlation function, which

matches the simulation data over the whole considered

time window, is a challenge. Such an endeavor requires

the knowledge of the correlation functions CT
v (k,t) and

CL
v (k,t) in the crossover regime between full hydrodynamics

and no hydrodynamics. We expect the adopted linearized

hydrodynamic description of the MPC fluid to fail already

on length scales somewhat larger than λc for the longitudinal

mode. The discrete character of the particle system and the

(local) fluctuations in particle number can only approximately

be captured by the wave equation adopted to derive Eq. (12).

V. CONCLUSIONS

We have studied the hydrodynamic properties of a MPC

fluid. We determined the transverse and longitudinal velocity

correlation functions in Fourier space and calculated the

velocity correlation function in real space for various collision

times. In particular, we investigated the validity range of

a hydrodynamic tensor description in terms of the Oseen

tensor, i.e., the spatial scale over which the velocity correlation

function exhibits the dependence ∼k−2. We find that this

relation is violated on length scales less than λc = π
√

2νh

(41). The characteristic value λc is independent of the collision

time for h/
√

ma2/(kBT ) ≪ 1 where it is comparable with a

collision cell. For large h values, λc increases linearly with h.

Hence, a fluidlike MPC system, where h/
√

ma2/(kBT ) � 1,

displays hydrodynamic behavior down to the collision cell

level in agreement with other simulation papers, such as a

rotating colloid near a solid wall [11].

Moreover, we analyzed the system-size dependence of the

velocity autocorrelation function. We demonstrated that the

correlation function decays exponentially at long times for

such systems because the correlation function is determined by

the smallest k value. In addition, we addressed the role of sound

in an isothermal system on the velocity correlation function.

We find that sound implies negative correlation functions [15],

which are more pronounced for smaller collision time steps. At

long times, when sound waves traverse the periodic simulation

box, oscillations appear in the autocorrelation function. These

oscillations complicate the identification of a long-time tail,

displayed by the correlation function.

For an analytical description of the MPC fluid, we chose

a fluctuating hydrodynamics approach based on the linearized

Landau-Lifshitz Navier-Stokes equation. Since the stress

tensor of the SRD implementation of a MPC fluid, where fluid

velocities are rotated, is nonsymmetric, we extended the fluid

stress-tensor correlation functions to satisfy the fluctuation-

dissipation theorem. The comparison of the theoretical results

for various fluid velocity correlations with simulations yields

excellent agreement over a wide range of length and time

scales. It is the analytical description which provides the

necessary insight into the characteristics of the correlation

functions to understand and to quantify the simulation findings.
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APPENDIX: MPC VELOCITY CORRELATION FUNCTION:

MOLECULAR CHAOS APPROXIMATION

Applying the molecular chaos approximation, i.e, there are

no correlations between different MPC particles, the velocity

correlation function of a MPC particles is [81]

〈vi(t) · vi(0)〉 =
〈

v
2
i (0)

〉

(1 − γ )n, (A1)

with t = nh,

γ =
2

3
(1 − cos α)

(

1 −
1

〈Nc〉

)

, (A2)

and the MPC parameters defined in Sec. II. Under this

assumption, there is no difference between transverse and

longitudinal velocity correlation functions anymore. In Fourier

space (38), the correlation becomes

〈v(k,t) · v(−k,0)〉 =
3kBT

mN
(1 − γ )ne−nhDk2

(A3)

[cf. Eqs. (32) and (33)]. For the discrete-time random process,

the expression (27) is replaced by

Tmc(k) = h

∞
∑

n=0

〈v(k,nh) · v(−k,0)〉
〈v(k,0) · v(−k,0)〉

−
h

2
, (A4)

in the limit t → ∞. Since [(1 − γ )e−hDk2

]n < 1, we find

Tmc(k) = h

(

1

1 − (1 − γ )e−hDk2
−

1

2

)

. (A5)

This expression reduces to Tmc(k) = h/2 in the limit k → ∞.
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