000127349 001__ 127349
000127349 005__ 20240709082019.0
000127349 0247_ $$2doi$$a10.1002/cssc.201200199
000127349 0247_ $$2WOS$$aWOS:000311056800026
000127349 037__ $$aFZJ-2012-00349
000127349 041__ $$aEnglish
000127349 082__ $$a540
000127349 1001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b0$$eCorresponding author
000127349 245__ $$aLimitation of Discharge Capacity and Mechanisms of Air-Electrode Deactivation in Silicon-Air Batteries
000127349 260__ $$aWeinheim$$bWiley-VCH$$c2012
000127349 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1358849687_4334
000127349 3367_ $$2DataCite$$aOutput Types/Journal article
000127349 3367_ $$00$$2EndNote$$aJournal Article
000127349 3367_ $$2BibTeX$$aARTICLE
000127349 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127349 3367_ $$2DRIVER$$aarticle
000127349 520__ $$aThe electrocatalytical process at the air cathode in novel silicon–air batteries using the room-temperature ionic liquid hydrophilic 1-ethyl-3-methylimidazolium oligofluorohydrogenate [EMI⋅2.3 HF⋅F] as electrolyte and highly doped silicon wafers as anodes is investigated by electrochemical means, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy. The results obtained by XPS and EPR provide a model to describe the limited discharge capacity by means of a mechanism of air-electrode deactivation. In that respect, upon discharge the silicon-air battery′s cathode is not only blocked by silicon oxide reduction products, but also experiences a major modification in the MnO2 catalyst nature. The proposed modification of the MnO2 catalyst by means of a MnF2 surface layer greatly impacts the Si–air performance and describes a mechanism relevant for other metal–air batteries, such as the lithium–air. Moreover, the ability for this deactivation layer to form is greatly impacted by water in the electrolyte.
000127349 536__ $$0G:(DE-HGF)POF2-152$$a152 - Renewable Energies (POF2-152)$$cPOF2-152$$fPOF II$$x0
000127349 588__ $$aDataset connected to CrossRef
000127349 7001_ $$0P:(DE-HGF)0$$aCohn, Gil$$b1
000127349 7001_ $$0P:(DE-HGF)0$$aEin-Eli, Yair$$b2
000127349 7001_ $$0P:(DE-HGF)0$$aScheiba, Frieder$$b3
000127349 7001_ $$0P:(DE-HGF)0$$aEhrenberg, Helmut$$b4
000127349 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b5
000127349 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.201200199$$n11$$p2278–2285$$tChemSusChem: chemistry & sustainability, energy & materials$$v5
000127349 909CO $$ooai:juser.fz-juelich.de:127349$$pVDB
000127349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000127349 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000127349 9132_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000127349 9131_ $$0G:(DE-HGF)POF2-152$$1G:(DE-HGF)POF2-150$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vRenewable Energies$$x0
000127349 9141_ $$y2012
000127349 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000127349 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000127349 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127349 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127349 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127349 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127349 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000127349 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000127349 920__ $$lyes
000127349 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000127349 980__ $$aVDB
000127349 980__ $$ajournal
000127349 980__ $$aUNRESTRICTED
000127349 980__ $$aI:(DE-Juel1)IEK-9-20110218
000127349 981__ $$aI:(DE-Juel1)IET-1-20110218