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Abstract. Using the newly developed VASP2WANNIER90 interface we have

constructed maximally localized Wannier functions (MLWFs) for the eg states of
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the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of

approximation for the exchange-correlation kernel. These include conventional density

functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-

DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an

effective eg tight-binding (TB) Hamiltonian we have computed a complete set of TB

parameters which should serve as guidance for more elaborate treatments of correlation

effects in effective Hamiltonian-based approaches. The method-dependent changes of

the calculated TB parameters and their interplay with the electron-electron (el-el)

interaction term are discussed and interpreted. We discuss two alternative model

parameterizations: one in which the effects of the el-el interaction are implicitly

incorporated in the otherwise “noninteracting” TB parameters, and a second where

we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both

models yield a set of tabulated TB parameters which provide the band dispersion in

excellent agreement with the underlying ab initio and MLWF bands.
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————————————————————————————————

1. Introduction

————————————————————————————————

Perovskite transition-metal oxides challenge electronic structure theory since

several decades, due to the variety of collective structural, electronic, and magnetic

phenomena which are responsible for the formation of complex orbital- and spin-

ordered states [1, 2, 3]. A prototypical textbook example of this class of materials

is the antiferromagnetic insulator LaMnO3. The ground state electronic structure

of LaMnO3 is characterized by the crystal-field induced breaking of the degeneracy

of the Mn3+ 3d4 manifold in the high-spin configuration (t2g)
3(eg)

1, with the t2g
orbitals lying lower in energy than the two-fold degenerate eg ones. Due to the strong

Hund’s rule coupling, the spins of the fully occupied majority t2g orbitals are aligned

parallel with the spin of the singly occupied majority eg states on the same site. The

orbital degeneracy in the eg channel is further lifted via cooperative Jahn-Teller (JT)

distortions [4, 5, 6, 7], manifested by long and short Mn-O octahedral bonds alternating

along the conventional orthorhombic basal plane, which are accompanied by GdFeO3-

type (GFO) checkerboard tilting and rotations of the oxygen octahedra [8, 9, 10] (see

figure 1). As a result, the ideal cubic perovskite structure is strongly distorted into

an orthorhombic structure with Pbnm symmetry [8, 9], and a d-type orbital-ordered

(OO) state emerges [11]. The corresponding occupied eg orbital can be written as

|θ〉 = cos θ
2
|3z2− r2〉+sin θ

2
|x2−y2〉 [12, 13, 14, 15], with the sign of θ ∼ 108◦ alternating

along x and y and repeating along z. This particular orbital ordering is responsible

for the observed A-type antiferromagnetic arrangement below TN = 140 K [16, 8]. It

was found that long-range order disappears above 750 K, whereas a local JT distortion

(without long-range order) remains (dynamically) active up to > 1150 K [6, 7, 14].

The question of whether the origin of orbital ordering should be attributed to a

superexchange mechanism (O-mediated virtual hopping of electrons between nearest

neighbor S = 2 Mn cations, associated with a local Coulomb electron-electron

interaction: d4id
4
j ⇋ d3id

5
j) [19] or to an electron-lattice coupling effect (structural-

induced splitting of the degenerate eg levels) [12] has been the subject of numerous

studies [20, 21, 22, 23, 24, 25, 26, 13, 27, 14]. Considering that there is no clear

experimental evidence to support one mechanism over the other, the employment of

theoretical models and computer simulations has become an essential tool to explain

the complicated coupling between structural and electronic degrees of freedom and

to interpret the experimental observations. On the basis of model calculations, it

has been recognized that the simultaneous inclusion of both superexchange and JT

interactions is crucial to provide, to some extent, a satisfactory description of the

observed transition temperatures TN, TOO and TJT [20, 13, 14]. This approach typically

relies on a suitable mapping between a realistic band structure calculated e.g. via

density functional theory (DFT) [28] and an effective many-body Hamiltonian, which is
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Figure 1. Representation of the JT/GFO distorted LaMnO3 structure. Small red

and light blue spheres indicate oxygen and manganese atoms, respectively, whereas

the larger spheres refer to the La atoms. Plot done using the VESTA visualization

program [18].

often achieved by downfolding the relevant bands and constructing a localized Wannier

basis [29, 13, 30, 31, 32].

The quality and characteristics of the Wannier representation inevitably depend on

the underlying Kohn-Sham states. It is well known that the mean-field-type one-particle

description of the electronic structure within the standard local density (LDA) [28]

or generalized gradient (GGA) [33] approximations to DFT is incapable to correctly

describe exchange and correlation effects in the so called strongly-correlated materials,

resulting, among other failures ‡ in much too small band gaps and magnetic moments [1].

For this reason, the DFT-derived subset of orbitals is typically employed as reference

for the one-electron (i.e. non-interacting) part of the effective Hamiltonian, where all

approximated contributions coming from LDA/GGA exchange-correlation effects are

subtracted in order to avoid double-counting [34]. For example, in the DFT+DMFT

method (combination of DFT and dynamical mean-field theory (DMFT)) [35], the

effective Hamiltonian can be written as Ĥ = ĤDFT − Ĥdc + ĤU , where ĤDFT is

the Kohn-Sham Hamiltonian, Ĥdc accounts for the double-counting correction, and

ĤU represents the Hubbard-like term which describes the electronic interactions in

the strongly correlated bands. A critical issue of the DFT+DMFT approach is

that a well defined expression for the double-counting potential is not known and

several forms have been suggested [34, 36]. Karolak and coworkers have recently

addressed this issue by treating the double-counting term as an adjustable parameter

‡ We note that the underestimation of the band gap and related failures are of course also partly due

to the intrinsic limitation of the Kohn-Sham approach, which is not meant to describe quasi-particle

excitations correctly.
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and suggested that the best agreement with experiment is achieved by setting the

double-counting potential in the middle of the gap of the impurity spectral function [37].

Within this context, it is therefore justified to construct effective Hamiltonians starting

from band structures obtained using different schemes, such as e.g. LDA+U [13] or

hybrid functionals [38], which usually provide much better gaps for semiconducting

materials than conventional DFT approximations and could therefore represent a more

appropriate “non-interacting” reference for model calculations.

For practical purposes, the most suitable starting point to study the physics of

complex transition-metal oxides is probably the tight-binding (TB) scheme, which relies

on a proper representation of the electronic structure using a localized basis set [1, 3].

Some of the authors have recently shown that maximally localized Wannier functions

(MLWFs) can be used to extract an effective TB description of the eg subspace in

LaMnO3 [31, 32]. The calculated TB parameters can then be used to construct a

simplified TB Hamiltonian in the form that is very often used for the description of

manganites, ĤTB = Ĥkin + ĤHund + ĤJT + Ĥe−e, which then provides a very accurate

representation of the underlying Kohn-Sham band structure.

Motivated by the reasons outlined above, here we calculate MLWFs for LaMnO3

using several different methods, including both the conventional GGA scheme and the

more sophisticated GGA+U , hybrid functionals, and GW approaches. Besides providing

a detailed description of the electronic and magnetic properties of LaMnO3 at various

levels of theory, we investigate how the corresponding differences in the treatment of

exchange-correlation effects influence the specific features of the MLWFs and the TB

parameters derived from them.

——————————————————————–

2. Methodology and Computational Details

——————————————————————–

2.1. DFT-based calculations

All our calculations are based on DFT within the Perdew-Burke-Ernzerhof [33] (PBE)

approximation to the exchange-correlation energy. The one-particle Kohn-Sham orbitals

are computed within a plane-wave basis employing two different codes: (i) the program

PWscf in combination with ultrasoft pseudopotentials included in the Quantum

ESPRESSO package [39], and (ii) the projector augmented wave [40, 41] (PAW) based

Vienna ab initio simulation package (VASP) [42, 43]. In particular, the PWscf program

is used to benchmark the implementation of the VASP2WANNIER90 interface at PBE

and PBE+U level. Due to the well known limitations of standard DFT in describing

the electronic structure of “strongly-correlated” compounds, three different corrections

to the PBE wavefunctions are adopted: (i) PBE+U : inclusion of a repulsive on-site

Coulomb interaction U following the recipe of Dudarev et al. [44]; (ii) Hybrid functionals:
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suitable mixing between density functional and Hartree-Fock theory [45] within the

scheme proposed by Heyd, Scuseria, and Ernzerhof (HSE06, HSE hereafter) in which

one quarter of the short-ranged exchange-correlation PBE functional is replaced by one

quarter of the short-ranged part of Hartree-Fock exchange [46, 47]; (iii) GW: explicit

evaluation of the self-energy Σ = iGW within a partially self-consistent GW0 procedure

made up of self-consistent update of the eigenvalues in the Green’s function G and a fixed

screened exchange W0, evaluated using PBE wavefunctions [48, 49]. In accordance with

previous studies [48, 49], five iterations were sufficient to obtain quasiparticle energies

converged to about 0.05 eV.

These four methodologies (PBE, PBE+U, HSE and GW) differ in a few

fundamental issues: (i) PBE relies on an approximate treatment of exchange-correlation

effects; (ii) PBE+U contains the same PBE approximate correlation, but takes into

account orbital dependence (applied to the d states of manganese) of the Coulomb and

exchange interactions which is absent in the PBE; (iii) HSE includes a portion of non-

local fully orbital dependent exact exchange and PBE correlation (iv) In GW exchange

and correlation contributions are directly computed from the self-energy.

An identical technical setup is adopted for VASP and PWscf calculations. All

ground state electronic and magnetic properties are calculated for the experimental

low temperature Pbnm structure reported in [8] using a regular Γ-centered 7×7×5 and

6×6×6 k-point mesh in PWscf and VASP, respectively (reduced to 4×4×4 at the GW0

level), and a plane wave energy cutoff of 35 Ry (≈ 476 eV) and 300 eV in PWscf and

VASP, respectively. Spin-polarized calculations were performed within a collinear setup

without the inclusion of spin-orbit effects. Except where otherwise noted, all PBE and

PBE+U results discussed in the present work refer to PWscf calculations whereas HSE

and GW0 results are obtained using VASP. In both PWscf and VASP we include the

Mn(3s), Mn(3p), La(5s), and La(5p) semi-core states in the valence. In PWscf the

(unoccupied) La(4f) states are excluded from the ultrasoft pseudopotential, whereas

they are present in the corresponding VASP PAW potential.§
To obtain the model TB parameters we perform additional calculations for a

simplified crystal structure with the same unit cell volume as the experimental Pbnm

structure, but which involves only the staggered (Qx-type) JT distortion and no

GFO distortion and no orthorhombic deformation of the lattice vectors (Qz = 0).

See [50, 31, 32] for more details and an exact definition of the different distortion

modes. The amplitude of Qx is 0.199 and 0.184 Å in the experimental Pbnm and in the

simplified JT(Qx) structure, respectively, and the amplitude of Qz in the experimental

Pbnm structure is -0.071 Å .

§ In the construction of the MLWFs within VASP we have shifted the La(4f) states to higher energies

through the application of a large U = 10 eV in order to avoid the overlap between La(4f) and

unoccupied Mn(eg) states, which would otherwise deteriorate the disentanglement procedure.
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2.2. Maximally localized Wannier functions

A set of N localized Wannier functions |wnT 〉 corresponding to a group of N bands

that are described by delocalized Bloch states |ψmk〉 is defined by the following

transformation:

|wnT 〉 =
V

(2π)3

∫

BZ

dk

[
N∑

m=1

U (k)
mn|ψmk〉

]
e−ik·T , (1)

where T is the lattice vector of the unit cell associated with the Wannier function, m is a

band index, k is the wave-vector of the Bloch function, and the integration is performed

over the first Brillouin zone (BZ) of the lattice. Different choices for the unitary matrices

U (k) lead to different Wannier functions, which are thus not uniquely defined by (1).

A unique set of maximally localized Wannier functions (MLWFs) can be generated by

minimizing the total quadratic spread of the Wannier orbitals [51].

Once the transformation matrices U (k) are determined, a TB representation of the

Hamiltonian in the basis of MLWFs is obtained:

Ĥ =
∑

T ,∆T

h∆T

nm ĉ†nT+∆T
ĉmT + h.c. , (2)

with

hTnm =
V

(2π)3

∫

BZ

dk

[
∑

l

(
U

(k)
ln

)∗

ǫlk U
(k)
lm

]
e−ik·T . (3)

Here, ǫlk is the eigenvalue corresponding to Bloch function |ψlk〉. For cases where the

bands of interest do not form an isolated set of bands but are entangled with other

bands, a two step procedure for obtaining the unitary transformation matrices (which

in this case are typically rectangular) is employed [52]. We note that T and ∆T in

(1)-(3) indicate lattice translations, whereas for crystal structures with more than one

atom per unit cell, n and m generally represent combined orbital, spin, and site indeces,

specifying the various orbitals at all sites within the primitive unit cell.

Based on the projected densities of states (PDOS) calculated within DFT, we

determine a suitable energy window for the construction of the MLWFs (more details

follow in section 3.2). MLWFs are constructed by merging PWscf and VASP with

the wannier90 code using the available PW2WANNIER90 tool [53, 54] and the

newly introduced VASP2WANNIER90 interface, respectively. Technical details on the

construction of MLWFs within the PAW formalism can be found in Ref.[55]. Starting

from an initial projection of the Bloch bands onto atomic eg basis functions |3z2 − r2〉
and |x2 − y2〉 centered at different Mn sites within the unit cell, we obtain a set

of two eg-like MLWFs per spin channel for each Mn site. The spread functional

(both gauge-invariant and non-gauge-invariant parts) is considered to be converged if

the corresponding fractional change between two successive iterations of the spread

minimization is smaller than 10−10.
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Practical instructions for the use of VASP2WANNIER90: VASP uses wannier90 in

library mode to generate all ingredients which are required to run the wannier90 code

as a post-processing tool.

Apart from the main wannier90 input file (wannier90.win) the input files needed

by wannier90 are [53]: (i) the overlaps between the cell periodic parts of the Bloch

states (wannier90.mmn), (ii) the projections of the Bloch states onto trial localized

orbitals (wannier90.amn), and (iii) the eigenvalues file (wannier90.eig). This set of files

is generated by VASP by setting LWANNIER90 = .TRUE. in the main VASP input file

(INCAR). If the file wannier90.win already exists, VASP will properly generate the files

(i)-(iii) according to the instructions specified in wannier90.win. If wannier90.win does

not exist, VASP will generate a default wannier90.win file, which should be suitably

modified in accordance to the keyword list described in the wannier90 user guide [56]

in order to tell VASP what quantities to compute. Then, VASP has to be run again

in order to create the additional wannier90 input files. To construct the UNK files

(the periodic part of the Bloch states represented on a regular real space grid), which

are required to plot the MLWFs, it is necessary to set LWRITE UNK = .TRUE. in

the INCAR file. In a spin-polarized calculation two sets of input files are generated

(VASP2WANNIER90 is employed only once to generate the files wannier90.mmn,

wannier90.amn, and wannier90.eig. These files are then used as input files for wannier90,

which is serially run for each energy window). Please refer to the online documentation

of wannier90 for a detailed description of all relevant instructions [56].

————————————————————————————————

3. Results and Discussion

————————————————————————————————

In this section we will first present and compare the electronic and magnetic

ground state obtained within the various levels of approximation (PBE, PBE+U , HSE

and GW0), before we will describe the downfolding of the resulting band structure

by Wannier function decomposition. Finally, TB parameterizations corresponding to

effective eg models, either with or without explicit electron-electron interaction term,

will be derived from these results, and implications of the different underlying band-

structures will be discussed.

3.1. Electronic and magnetic ground state

The calculated band structures are displayed in figure 2 and the corresponding indirect

(Ei) and smallest direct (Ed) band gaps are listed in table 1. The calculated valence

and conduction band spectra and the PDOS (corresponding to Mn(eg), Mn(t2g), and

O(p) states), are represented in figure 3 and figure 4, respectively.

It can be seen from figure 2 that the eigenvalue dispersion in LaMnO3 is

characterized by an insulating state with indirect energy gap. By comparing with the
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Figure 2. Calculated band structure along certain high-symmetry directions within

the BZ. Each panel reports results obtained by a different method, as specified in the

panel title. E=0 is aligned to the middle of the gap.

Table 1. Collection of calculated (present work and previous studies) and

experimental value for the indirect (Ei) and direct (Ed) band gap of LaMnO3.

The measured values refer to optical conductivity [63, 64, 65], Raman [66], and

photoemission [67] experiments.

This Work

HSE GW0@PBE PBE PBE+U

U = 2 U = 3 U = 4

Ei 2.25 1.41 0.38 0.82 0.98 1.10

Ed 2.55 1.68 0.75 1.15 1.30 1.42

Previous studies

B3LYP[61] G0W0@LDA[62] GGA[60] GGA+U [60] Expt.

U=2

Ei 2.3 0.82 0.27 0.81

Ed 1.00 0.70 1.18 1.1a, 1.9b, 2.0c,d, 1.7e

aRef. [63], bRef. [64], cRef. [65], dRef. [66], eRef. [67],

PDOS shown in figure 4, it becomes clear that within all methods the Mott-Hubbard

gap is opened between occupied and empty states with predominant Mn(eg) character.

While the width of the band gap differs strongly between the various methods, each one

is in good agreement with previous LDA/GGA [57, 58, 59, 60], (LDA/GGA)+U [58, 60],

and hybrid functionals [61], respectively (see table 1). Our partially-self consistent GW0

cannot be directly compared with the single-shot G0W0 results of Nohara et al.[62]

since the latter depend much more on the initial LDA wavefunction and consequentially

convey a smaller bandgap.

Due to the inadequate treatment of exchange-correlation effects, conventional PBE-

DFT leads to a significant underestimation of EPBE
d = 0.75 eV compared to the
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experimental values obtained from optical conductivity measurements (1.1 eV [63],

1.9 eV [64], 2.0 eV [65]), Raman (2.0 eV [66]), and photoemission data (1.7 eV [67]).

In addition, the uppermost filled Mn(eg) bands (with energies in the region between

−1.3 eV and 0.0 eV) are well separated from the lower-lying mostly Mn(t2g)- and O(p)-

like states (below −1.5 eV). In contrast, while the lower part of the group of bands

immediately above the gap (up to about 2 eV) exhibits predominant local majority

spin eg character, these bands are strongly entangled with local minority spin t2g states

at slightly higher energies (between approximately 1-2 eV). The inclusion of the on-

site interaction term within the PBE+U approach, separates these higher-lying local

minority spin t2g states from the local majority eg bands directly above the gap for

U > 2 eV. Furthermore, increasing U also increases the band gap (EPBE+U
d = 1.42 eV

for U = 4 eV) and lowers the filled eg states relative to the bands with dominant Mn(t2g)

and O(p) character, which leads to an appreciable overlap between these sets of bands

around the Γ point for U = 4 eV.

Changing to a more elaborate treatment of the exchange-correlation kernel, we

observe that HSE provides a value of the bandgap (EHSE
d = 2.55 eV) that is significantly

larger (by ≈ 0.5 eV) than the experimental measurements. This is in line with

previous hybrid functional estimates based on the B3LYP approach implemented within

a Gaussian basis set [61]. By comparing the PBE and HSE band gap one could argue

that a smaller portion of exact Hartree-Fock exchange should be included in the hybrid

functional framework in order to obtain a better agreement with experiment. Indeed,

a reduced mixing parameter amix = 0.15 shrinks the direct gap down to 1.79 eV,

almost on par with the photoemission measurements of Saitoh and coworkers [67], and

with the more recent optical conductivity data of Jung et al.[64, 65], and Krüger et

al.[66]. LaMnO3 therefore seems to represent another example for which the one-quarter

compromise (mixing 1/4 of exact exchange with 3/4 of DFT exchange) is not the ideal

choice [68]. Finally, the parameter-free GW0 technique leads to a quite satisfactory

prediction of the band gap, EGW0

d = 1.68 eV, and about significantly larger than the

only previous single-shot (i.e. perturbative) G0W0 study of Nohara et al. based on

initial LDA wavefunctions [62]. Similarly to HSE and PBE+U (for U = 3 eV), GW0

deliver eg bands around EF well separated from the O(p) and Mn(t2g) bands below

and, to a lesser extent, above (there is an appreciable mixing of Mn(eg) and Mn(t2g)

states along the T-Z-Γ path around 2 eV), in clear contrast with the PBE picture which

predicts a certain degree of overlap between the eg bands and the higher lying t2g bands.

In order to provide further assessment of the quality of the various methods

in describing the electronic structure of LaMnO3 we compare in figure 3 the

simulated valence and conduction band spectra with the corresponding photoemission

spectroscopy and X-ray absorption spectroscopy data [69]. For negative energies

(occupied states) none of the four methods differs dramatically from the experimental

spectrum, even though the multi-peak structures in the range of −7 eV to −4 eV seen

within PBE+U and HSE do not have a clear experimental correspondence, whereas

PBE and GW0 profiles better follow the main three experimental peak/shoulders. The
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Figure 3. Comparison between experimental [69] (blue squares) and calculated

valence and conduction band spectra for PBE, PBE+U (U = 3 and 4 eV), HSE,

and GW0. The calculated and measured spectra have been aligned by overlapping the

valence band maxima and conduction band minima.

situation is more critical for the unoccupied region, since none of the methods is capable

to correctly reproduce the two-peaks structure characterizing the onset of the conduction

band right above EF. These two peaks could be interpreted as formed by eg (lower one)

and t2g (second ones) contributions and are described differently by the various schemes,

following the corresponding band dispersions discussed in Fig. 2: (i) PBE both peaks

merge in one single strong electronic signal, reflecting the large overlap between eg
and t2g bands right above EF; (ii) in PBE+U the two peak are much too separated,

reflecting the wide eg-t2g band splitting; (iii) HSE and GW0 are rather similar. Their

spectra are characterized by a lower eg small bunch of states (onset of the conduction

band spectra) associated to a more intense t2g-like peak, but the GW0 eg/t2g splitting

(≈ 1.4 eV) better matches the experimental one (≈ 1.1 eV) as compared to the larger

HSE splitting (≈ 1.7 eV). From these results we can infer that GW0 and HSE convey the

most satisfactory picture in terms of peak position and corresponding spectral weight

for both occupied and unoccupied states, with GW0 better reproducing the splitting

between the two lower conduction peaks. However, it should be noted that the relative

weights of the two lower conduction peaks do not match with experiment, indicating

that it is necessary go beyond the GW approximation to obtain a refined agreement

with experiment, for instance using the Bethe-Salpeter equation (this is beyond the

scope of the present study). We underline once more that unlike PBE+U and HSE

(in which the proper adjustment of the parameters U and amix can cure the bandgap
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problem and lead to values of the gap close to the experimental ones), the parameter-

free GW0 scheme is capable to provide a rather accurate picture without the need of

any adjustable parameter.

Next, we analyze the magnetic properties in terms of the nearest-neighbor magnetic

exchange interactions within the orthorhombic ab plane (Jab) and along c (Jc) [70, 61, 71].

This will provide further insights into the performance of the various methods with

respect to energetic properties of LaMnO3. By mapping the calculated total energies

for different magnetic configurations onto a classical Heisenberg Hamiltonian H =

−1
2

∑
i 6=j Jij Si · Sj, the following equations for Jab and Jc can be obtained (see also

[61, 71]):

EFM − EAAF = −32Jc (4)

ECAF − EFM = 64Jab . (5)

Here, EFM corresponds to the total energy for the ferromagnetic (FM) configuration,

whereas EAAF and ECAF indicate the total energies associated with antiferromagnetic

(AFM) ordering along z, and a two-dimensional checker-board like arrangement within

the xy plane, respectively [61].

The values of Jab and Jc obtained using the various methods considered within

this work are listed in table 2 along with the calculated magnetic moments at the

Mn site. We note that, due to the neglect of orbital degrees of freedom which in

LaMnO3 are strongly coupled to spin degrees of freedom, it is not obvious whether a

classical Heisenberg model is well suited to give a complete picture of the magnetic

properties of LaMnO3. Nevertheless it can still provide an accurate parameterization

of the energy differences between the various magnetic configurations. However, the

quantitative comparison with the experimental coupling constants derived from spin-

wave spectra, i.e. small fluctuations around the AFM ground state, should be taken with

care. In view of this, we can draw the following conclusions about the efficiency of the

various DFT and beyond-DFT methods employed in the present study: (i) the magnetic

energy differences exhibit appreciable variation between VASP and PWscf leading to

differences of about 1-2 meV in the magnetic coupling constants. This is most likely due

to the different pseudopotential technique employed in the two codes (PAW method vs.

ultrasoft pseudopotential), which lead to qualitative differences especially at PBE+U

level, as discussed below. A more elaborate discussion on the performance of different

functionals and methods in predicting the magnetic couplings is given in Refs. [60, 71],

where it is concluded that the PAW values are very similar to the full potential FLAPW

ones. (ii) In both codes PBE gives the correct A-AFM ground state, delivering a negative

Jc (J
VASP
c = −2.13 meV, JPWscf

c = −0.81 meV) and a positive Jab (J
VASP
ab = 3.22 meV,

JPWscf
ab = 4.56 meV). (iii) The “+U” correction to PBE decreases the EFM − EAAF

energy difference and eventually leads to the prediction of a FM ground state for U

larger than a certain value. This critical value is rather different within the two codes

used in this study: Jc becomes positive for U = 2 eV and U = 4 eV, in PWscf and

VASP, respectively. We note that this difference is almost entirely due to the difference
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in the corresponding PBE results. The U -induced changes in the magnetic coupling

constant Jc relative to the U = 0 reference are nearly identical within the two codes.

(iv) While Jc within HSE and PBE+U(VASP) are very similar for U between 2-3 eV, the

ratio between Jc and Jab is rather different within the two approaches. (v) Within the

limitations regarding the applicability of a Heisenberg picture to LaMnO3 stated above,

HSE seems to be most consistent with the values of the magnetic coupling constants

derived from neutron diffraction measurements of spin-wave spectra [72] and magnon

data [75]. This further confirms the predictive power of HSE in describing exchange

interactions in transition metal oxides, as compared to other available beyond-DFT

schemes [73].

We can also see that all methods result in values for the local magnetic moments of

the Mn cation that are within the range of variation of the experimental data. Generally,

increasing U within PBE+U leads to a more localized magnetization density compared

to PBE, and thus increases the local magnetic moments.

On the basis of the above analysis both of the electronic and magnetic properties

of LaMnO3, we can conclude that HSE and, when applicable, GW0 (the calculation

of magnetic energies at GW level to extract exchange coupling constants is presently

not possible, or at least extremely difficult) are the most consistent with the available

experimental data in terms of spectral properties, electronic structure and magnetic

exchange interactions of LaMnO3. In view of this, we can now proceed to the

discussion of the Wannier-based description of the eg bands and the associated TB

parameterization.

3.2. Maximally localized Wannier functions

In this section we present the details for the construction of the MLWFs with

predominant eg character from the calculated bands around the gap. In a TB

picture, these MLWFs can be seen as “antibonding” bands resulting from the σ-type

hybridization between the Mn(d) and O(p) atomic orbitals. Note that in this and the

next section the discussion of the PBE+U results refers to the representative value of

U = 3 eV, unless explicitly stated otherwise.

Figure 4 shows the PBE and beyond-PBE (PBE+U , HSE and GW0) band

structures and the corresponding PDOS with Mn(eg), Mn(t2g), and O(p) character.

Apart from the obvious hybridization between Mn(d) and O(p) states, “eg-like” orbitals

at a certain site can hybridize with “t2g-like” orbitals at a neighboring site as a result

of the tilt and rotation of the oxygen octahedra. This leads to bands with mixed

eg/t2g character (note the bands around the gap with strong PDOS components of both

eg and t2g character). Due to this strong mixing it is not possible to construct 8 eg
character MLWFs within one energy window used in the disentanglement procedure.‖
‖ In the antiferromagnetic case each band is of course two-fold degenerate with respect to the global

spin projection. Here and in the following we refer to such pairs of spin-degenerate bands as “one

band”.
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Table 2. PBE, PBE+U , HSE and GW0 derived magnetic exchange parameters (meV)

and magnetic moment at Mn sites µ (µB). The experimental and previously published

computed data are taken from: a Ref. [60], b Ref. [61], c Ref. [72], d Ref. [8], e Ref. [74],

and f Ref. [75]

Jab Jc µ

PWscf

PBE 4.56 −0.81 3.67

U = 2 eV 5.02 0.37 3.82

U = 3 eV 5.30 0.98 3.89

U = 4 eV 5.63 1.55 3.96

VASP

PBE 3.22 −2.13 3.50

U = 2 eV 3.54 −0.84 3.68

U = 3 eV 3.57 −0.30 3.76

U = 4 eV 3.61 0.17 3.83

HSE 2.56 −0.53 3.74

GW0 3.51

Previous studies

GGA+U (U = 2 eV)a −1.30 3.46

B3LYPb 2.09 −1.01 3.80

Expt 1.66c −1.16c 3.87c, 3.7±0.1d, 3.4e

1.67f −1.21f

The corresponding energy window would inevitably also contain the local minority

spin “t2g” bands. Since due to the GFO distortion these bands can hybridize with

the minority spin “eg” bands, this would lead to MLWFs with strongly mixed eg/t2g
character. To circumvent this problem, we therefore construct two separate sets of 4

local majority and 4 local minority spin MLWFs using two different energy windows [31].

These energy windows have to be chosen carefully for each individual method. (This

problem is not present for the purely JT(Qx) distorted structure, from which we derive

most of the model parameters, see section 3.3. In this case we calculate a full set of 8

MLWFs).

To find a suitable energy window is quite straightforward for the local majority

spin case. The upper bound of the energy window is determined by the upper bound

of the highest (in energy) peak of the local majority spin Mn(eg) PDOS, while the

lower bound of the energy window should be placed above the occupied bands with

strong O(p) and/or local majority spin Mn(t2g) character. It can be seen from figure 4

(and perhaps more clearly from figure 2), that both the lower and the upper bound

fall within small gaps separating the bands within the energy window from other bands

at lower and higher energies. Furthermore, for PBE+U and HSE the MLWFs can be

constructed from a completely isolated set of bands, whereas in the case of PBE and

GW0 additional bands with predominant minority spin Mn(t2g) character are included

in the energy window. However, due to the different local spin projection, these latter

bands have no noticeable effect on the final MLWFs.
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Figure 4. Effective eg MLWF bands (thick red lines) for LaMnO3 superimposed to

the ab initio electronic bands (gray thin solid/dotted lines) and associated normalized

PDOS (to the left and right of the band structure plots) corresponding to Mn(eg) (red

filled areas), Mn(t2g) (green lines), and O(p) character (blue dots). In the left/right

PDOS graphs, Mn(d) PDOSs correspond to the local majority/minority Mn sites while

the O(p) PDOS is calculated as an average over all O sites. The two energy windows

used in the wannier-downfolding are indicated by dashed and dot-dashed lines. The

Fermi level (E=0 eV) is set in the middle of the gap.

For the local minority spin MLWFs, the upper bound of the energy window can be

found in the same way as for the local majority spin bands. Within PBE the lower bound

is also easily determined, since it falls within a small gap separating the local minority

spin bands with predominant eg and t2g character. However, no such gap exists within

PBE+U , HSE, and GW0, and it is thus not possible to fully exclude the t2g character

from the resulting MLWFs. Instead, the lower bound of the energy window has to be

carefully adjusted by manually checking the eg character of the calculated MLWFs in

real space.

The band dispersion of the so-obtained MLWFs is shown in figure 4 as thick red

lines. The 4 (energetically lower) local majority MLWF bands follow very closely the

underlying PWscf/VASP bands and the overall dispersion is very similar for all methods.

Despite the strong band-entanglement, the dispersion of the 4 (energetically higher) local

minority MLWF bands is also very similar within all methods. Only the energetically

lowest local minority spin band within PBE+U and HSE exhibits strong deviations from

the corresponding PBE and GW0 case. This is due to the above-mentioned difficulty
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to exclude the t2g character in a controlled way. Conclusions drawn from such sets of

MLWFs should therefore be taken with care. Overall, we note that the similarities in

the band structure and PDOS between PBE and GW0 as well as between PBE+U and

HSE, regarding the degree of hybridization between Mn(eg), Mn(t2g) and O(p) orbitals,

that have been pointed out in the previous section, are also reflected in the MLWF

bands.

To further demonstrate the similarities between MLWFs calculated at different

levels of theory, we show in figure 5 the real space representation of the 2 MLWFs

localized at a certain Mn site, projected on the xy plane. The dominant eg character

at the central Mn site together with the “hybridization tails” of mostly p character at

the surrounding O sites is clearly visible for all MLWFs and methods. For the local

majority spin MLWFs (1st and 3rd row), there is essentially no visible difference in

orbital character between PBE and PBE+U , only the O(p) tails are marginally stronger

if the Hubbard U correction is applied. At the HSE level, both local majority MLWFs

exhibit significant x/y asymmetry, leading to more pronounced O(p) hybridization tails

along the short and long Mn-O bond for the |3z2 − r2〉-like and |x2 − y2〉-like function,

respectively. Within GW0, the central eg-like part as well as the O(p) tails are less

asymmetric than for HSE, and appear similar to PBE/PBE+U for both local majority

MLWFs. In comparison with the local majority MLWFs, the O(p) hybridization tails

of the local minority MLWFs (2nd and 4th row) are generally less pronounced. There

is no significant difference between the local minority spin MLWFs calculated using the

different methods. Even at the PBE+U and HSE levels, for which the admixture of the

t2g character could not be controlled systematically, there is no apparent difference in

comparison with PBE and GW0. The orbitally ordered states resulting from this set of

MLWFs basis set is shown in Fig.6 in terms of charge density isosurfaces of the highest

occupied and lower unoccupied orbitals associated to the eg bands below and above EF

in the lower energy window as defined in Fig. 4. This plot clearly show the staggered

ordering at neighbouring Mn sites and the significant p− d hybridization at the oxygen

sites. As a comparison we provide in Fig. 7 the corresponding staggered ordering

associated to the highest occupied eg-like bands as obtained from the full ab initio self-

consistent charge density (without downfolding) within the various methods employed

in the present study. The similarities between the ab initio and wannierized orbital

ordering is a further demonstration of the quality and reliability of our wannierization

procedure.

3.3. Tight binding model Hamiltonian

As already mentioned in the introduction, the electronic Hamiltonian of the eg manifold

in manganites is generally described within the TB formalism as a sum of the kinetic

energy Ĥkin and several local interaction terms, the Hund’s rule coupling to the

t2g core spin ĤHund, the JT coupling to the oxygen octahedra distortion ĤJT, and

eventually the electron-electron interaction Ĥe−e, which can be written as (see e.g.
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Figure 5. Real space representation of the four eg MLWFs corresponding to a certain

Mn site, projected on the xy plane cutting through the Mn site. Black iso-lines

correspond to ±N/
√
V with integer N ≥ 1, the white region is defined by values in

the interval [−1/
√
V ,+1/

√
V ], where V is the volume of the unit cell. Blueish/reddish

hue denotes negative/positive values of MLWFs and Mn and O atoms are shown as

blue and red spheres, respectively.

Figure 6. Charge density isosurfaces of the orbitally ordered states associated to the

highest occupied (a) and lower unoccupied (b) MLWFs orbitals. Color coding and

symbols are the same as in Fig. 5.
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Figure 7. Charge density isosurfaces of the highest occupied eg orbitals (from EF

to the lower energy bound as defined in Fig.4) showing the orbitally ordered state of

LaMnO3 obtained using the different methodologies employed in this study.

Refs. [3, 23, 50, 27, 31, 32])

Ĥkin = −
∑

a,b,R,∆R,σ

ĉ†σ,a(R+∆R)tσ,a(R+∆R)b(R)ĉσ,b(R) , (6a)

ĤHund = −JH
∑

R

SR

∑

a,σ,σ′

ĉ†σ,a(R)τ σσ′ ĉσ′,a(R) , (6b)

ĤJT = −λ
∑

a,b,R,i,σ

ĉ†σ,a(R)Q
i
R
τ iabĉσ,b(R) , (6c)

Ĥe−e =
1
2

∑

a,b,c,d,σ,σ′

Uabcdĉ
†

σ,a(R) ĉ
†

σ′,b(R)ĉσ′,d(R)ĉσ,c(R) . (6d)

Here, ĉσ,a(R) and ĉ†σ,a(R) are the annihilation and creation operators associated with

orbital |a〉 and spin σ, centered at site R. Furthermore, tσ,a(R+∆R)b(R) are the hopping

amplitudes between orbitals at site R and R+∆R, τ iab are the standard Pauli matrices,

JH is the Hund’s rule coupling strength, SR is the normalized t2g core spin at site

R, λ is the JT coupling constant, and Qi
R

is the amplitude of a particular JT mode

(i = {x, z}). In our TB analysis we will only consider the electron-electron interaction

within a mean-field approximation and use a simplified version of Eq. (6d) corresponding

to Uaaaa = Uabab = UW and all other interaction matrix elements set to zero, which is

consistent with the PBE+U treatment according to Dudarev et al. [44]. The resulting

shift in the one-electron potential due to the electron-electron interaction then becomes

Vσ,ab = UW

(
1
2
δab − nσ,ab

)
, (7)

where UW is the Hubbard parameter in the basis of MLWFs and nσ,ab are the

corresponding occupation matrix elements.¶
The model parameters (tσ,a(R+∆R)b(R), JH, λ, UW) which determine the TB model

Hamiltonian can in principle be obtained from the Hamiltonian matrix elements h∆T

nm in

¶ Here and in the following we often suppress either site or spin indeces or both of them, unless the

corresponding values do not become clear from the context. Apart from the hopping amplitudes all

quantities are diagonal in site index. In addition, for the collinear configurations of core-spins SR

considered here, the Hamiltonian and all quantities involved are also diagonal with respect to the

global spin projection.
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the MLWF basis. We note that ∆T in (2) refers to lattice translations whereas ∆R in

(6a) refers to the relative position with respect to the lattice of Mn sites. In the following

we will therefore use the following simplified notation: h∆T

nm → h∆T

aR,bR′ → h∆R

ab where

∆R = R′ −R+∆T . Then a and b correspond to the two effective eg orbitals centered

at individual Mn sites separated by ∆R. In order to further simplify the notation for

the hopping amplitudes, we choose one Mn site as the origin (R = 0) and align the x

and y axes of our coordinate system with the directions corresponding to the long and

short Mn-O bond of the JT(Qx) mode, respectively. We then define the vectors x̂, ŷ, ẑ

according to the nearest-neighbor spacing of the Mn sites along the respective axes.

Our TB parameterization is based on the procedure described by some of the

authors in [31], with certain modifications, explained in the following. In [31] it was

shown that, at least at the PBE level, the influence of an individual structural distortion

(JT or GFO) on the Hamiltonian matrix elements h∆R

ab expressed in the basis of eg-like

MLWFs is to a great extent independent from the other distortion, and that furthermore

the magnetic configuration has only a weak influence on the resulting model parameters.

The TB parameterization was therefore based on various model structures with both

FM (which always leads to a metallic system) and A-AFM order, with individual

structural distortion modes frozen in. Due to the significantly increased computational

cost of the HSE and GW0 methods in comparison with PBE (in particular for the

metallic state for which a dense k-points mesh is required to achieve a well converged

solution), it is desirable to derive the TB parameters from as few (and if possible

insulating) model structures as possible. In the present study, we therefore construct

the TB parameterization from only two crystal structures: the purely JT(Qx) distorted

structure and the experimental Pbnm structure, in both cases with A-AFM order, which

then yields an insulating solution. As we will show in table 3, the TB parameters derived

in this way at the PBE level deviate only marginally from the parameters found in the

previous study [31].

In the following we describe the modified method we use to construct parameters

of the TB model (6a)-(6d). Many of the simplifications on which our effective TB

description of LaMnO3 is based can be understood from the MLWF matrix elements

shown in figure 8 and will be discussed in the remainder of this section. We will first

consider an effectively “noninteracting” case in which we neglect the term Ĥe−e and

consider how the more sophisticated beyond-PBE treatment of the exchange-correlation

kernel affects the hopping, JT, and GFO-related parameters. We name this approach

Model 1. Then, we discuss an alternative way which involves an explicit treatment of

Ĥe−e in the model Hamiltonian within mean-field approximation. This allows us to

obtain estimates for the corresponding on-site interaction parameters, by keeping the

conventional PBE description as reference. We call this Model 2. Further technical

details can be found in the Appendix.

3.3.1. TB parameterization with implicit el-el interaction: Model 1. As shown in [31]

for the PBE case, good agreement between an effective eg TB model and the underlying
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Kohn-Sham band structure can be achieved by considering hopping only between nearest

neighbor Mn sites, next-nearest Mn neighbors, and second-nearest Mn neighbors along

the x, y, and z axes, described by parameters tss, txy, and t2z, respectively (see

Appendix). Thereby it is necessary to take into account the spin dependence of the

nearest neighbor hopping amplitudes. This can also be seen from figure 8(a) and (b),

where (for PBE) the difference between (hxaa)
↑ and (hxaa)

↓ (from which t↑↑ and t↓↓ are

calculated using (1.2)) is indeed significant. On the other hand, the further neighbor

hoppings (txy and t2z) show only negligible spin dependence, and are therefore calculated

from the corresponding spin averaged Hamiltonian matrix elements. We note that s in

tss should be read as a local spin index (i.e. relative to the orientation of the local

core-spin SR) corresponding to the sites between the electron hops, which can have the

values ±1 corresponding to ↑/↓. The parameters t↑↑ and t↓↓ thus represent hopping

amplitudes within FM ordered planes. As a result of the GFO distortion, t↑↑ and t↓↓ are

reduced by a factor (1− ηst ), where η
s
t is determined from the ratio of the tss calculated

for the Pbnm and JT(Qx) structures (see (1.3) in Appendix). The hopping amplitude

t↑↓ between A-AFM ordered planes is then calculated as average of t↑↑ and t↓↓. As

also shown in [31], the JT distortion induces a strong splitting between the nondiagonal

elements of the nearest-neighbor hopping matrix within the xy plane (see the differences

between hx12 and h
x
21 in figure 8(a,b)), which is parameterized via a non-local JT coupling

strength λ̃ (see (1.5) in Appendix).

Within model 1 only two contributions to the on-site part of the TB Hamiltonian

are considered: the Hund’s rule coupling ĤHund and the Jahn-Teller coupling ĤJT. The

strength of the Hund’s rule coupling JH is determined from the spin splitting of the on-

site diagonal matrix elements h0aa for the Pbnm structure, averaged over both orbitals

(see Eq. (1.8)). The JT coupling strength λs for local spin-projection s is determined

according to Eq. (6c) from the splitting of the eigenvalues of the on-site Hamiltonian

matrix h0 and the JT amplitude Qx for the purely JT(Qx) distorted structure. As can be

seen from figure 8(c,d), the corresponding matrix elements are strongly spin-dependent,

leading to large differences in the corresponding JT coupling constants. Similar to the

hopping amplitudes, λs is reduced by a factor (1− ηsλ) due to the GFO distortion, which

is determined from the ratio between λs calculated for the Pbnm and JT(Qx) structures.

Table 3 lists the obtained TB parameters corresponding to Model 1 calculated

within the various levels of approximation. Both hopping amplitudes and JT coupling

strength correspond to the case without GFO distortion. It can be seen from the

first two rows of table 3 that the parameterization we use in the present study yields

only marginal differences for the PBE hopping parameters and Hund’s rule coupling

in comparison with [31]. This corroborates the quality of our TB parameterization

based on only two structures (JT(Qx) and Pbnm with A-AFM order). Note, that here

we use a crystal structure derived from low-temperature measurements [8], whereas in

[31] the room temperature measurements of Ref. [9] have been used. The JT coupling

parameters differ slightly more from [31], due to the revised definition of λs used in
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Figure 8. Hamiltonian matrix elements in the basis of MLWFs for the experimental

Pbnm structure: nearest-neighbor terms corresponding to local majority (a) and

minority (b) spin projection, diagonal (c) and off-diagonal (d) on-site terms. Local

majority and minority spin projections are indicated by up and down triangles,

respectively. Left/right parts of the horizontal axis corresponds to PWscf/VASP

results.

Table 3. The TB model parameters as derived from PBE and beyond-PBE band

structures (Model 1, in PBE+U we used U=3 eV). Since the PBE+U values of η↓t
and λ↓ are unreliable (see text), we use the corresponding PBE values (in brackets)

to compute the TB bands displayed in figure 9. Units: t↑↑, t↓↓, txy, t2z in meV; λ̃ in

meV/Å; JH in eV; λ↑, λ↓ in eV/Å; η↑t , η↓t , ηλ are unit-less.

Hopping parameters On-site parameters

t↑↑ t↓↓ λ̃ txy t2z η↑t η↓t JH λ↑ λ↓ ηλ

PWscf

PBE [31] 648 512 530 18 30 0.26 0.26 1.50 3.19 1.33 0.26

PBE 632 512 523 12 51 0.28 0.39 1.56 3.35 1.07 0.22

PBE+U 748 482 516 12 51 0.41 (0.39) 2.16 5.22 (1.07) 0.21

VASP

PBE 630 503 516 13 50 0.35 0.42 1.33 3.21 1.02 0.23

HSE 750 497 707 13 50 0.40 0.20 2.42 10.25 0.96 0.28

GW0 746 469 490 13 50 0.24 0.41 1.90 4.43 0.88 0.04

the present study. Another important change arises from the use of 3 separate GFO

reduction factors η↑t , η
↓
t , and ηλ, instead of using one averaged value as it was done in

[31]), which provides a more accurate TB description of the MLWF bands. It can be

also seen from table 3 that at the PBE level, there is essentially no difference between

the hopping amplitudes calculated using PWscf and VASP. There is a 12 % difference

in JH between PBE(VASP) and PBE(PWscf), which could be related to the noticeable

differences in the energetics of the various magnetic configurations discussed earlier.

Comparing the parameters obtained from the beyond-PBE methods with the pure
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PBE case, we observe that the hopping parameter t↑↑ is generally increased in all beyond-

PBE methods. As was shown in [32], this can be understood within an extended nearest

neighbor TB model including both Mn(d) and O(p) states, from which an effective eg-

only model can be derived in the limit of large energy separation εdp between the d and

p orbitals. The effective hopping teffdd in the eg model is then given in terms of the nearest

neighbor hopping amplitude tdp of the extended d-p model as teffdd = t2dp/εdp. The increase

of t↑↑ is therefore consistent with the observation that all beyond-PBE methods lower

the eg bands relative to the lower-lying oxygen p bands. The small decrease of t↓↓ within

PBE+U (for small values of U . 2 eV) can be explained in the same way, since here the

corresponding energy separation between O(p) and Mn(eg) increases. The JT parameter

λ̃ is generally very similar for PBE, PBE+U , and GW0, while a strong enhancement

of λ̃ can be seen for HSE, which is consistent with the strong x/y asymmetry of the

corresponding MLWFs seen in figure 5(c). Since the changes of the already rather small

further-neighbor hoppings within the beyond-PBE methods are very small, we use the

corresponding PBE values for simplicity. The GFO reduction factors for the hopping

amplitudes, η↑t and η↓t , are slightly decreased within GW0, whereas η
↑
t is increased for

PBE+U and HSE, and η↓t is strongly decreased in HSE. Due to the strong mixing

between minority spin eg and t2g bands within PBE+U , which was already discussed

in section 3.2 (see also figure 9(b)), the determination of η↓t is rather unreliable in this

case, and we therefore use the corresponding PBE value. We note that the same effect

also leads to the strong changes in the l cal minority hopping matri xelements within

the xy plane calculated within PBE+U for U & 3 eV (see figure 8(b)). Using the HSE

and GW0 methods we do not encounter this problem.

For all beyond-PBE methods, a significant increase of JH and λ↑ can be observed,

which in the TB model gives rise to an increase of the spin splitting and the band

gap, respectively. The change of λ↓ compared to PBE is very small for both HSE and

GW0. Due to the inaccurate treatment of the minority spin bands, PBE+U gives an

unrealistically small value of λ↓ = 0.30 eV/Å, which we therefore substitute with the

corresponding PBE value. While ηλ does not change significantly for small values of the

Hubbard U , a small increase (significant decrease) is observed for HSE (GW0).

To assess the quality of our parameterization we now use the TB parameters

tabulated in table 3 to compute the resulting eg band structure. In figure 9(a) and (c),

we compare the band dispersions of the TB model (blue filled circles) and the MLWFs

(thick red lines) for the experimental Pbnm structure within the PBE approximation.

Despite the many simplifications made in the construction of the model parameters, the

TB model can reproduce the MLWF bands to a remarkable accuracy (for both PWscf

and VASP). The reliability of the beyond-PBE TB representation can be appreciated

by the overall excellent match between the TB and MLWFs bands shown in figure 9(b),

(d) and (e), which exhibit the same quality as observed at the PBE level. This is

particularly true for the band gap, whose method-dependent changes (see table 1) are

perfectly reflected in the TB description.+

+ The MLWF and TB bands were aligned by minimizing a mean deviation which was calculated as
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Figure 9. Comparison of the band dispersion corresponding to MLWFs (red lines),

the TB Model 1 using parameters given in table 3 (blue circles), and the TB Model 2

with interaction parameters given in table 4 (green crosses).

3.3.2. TB parameterization with explicit el-el interaction: Model 2. Now, we turn

our attention on the alternative TB parameterization in which we attempt to treat

the modifications induced by the beyond-PBE methods as a perturbation to the

“noninteracting” PBE description by explicitly considering the el-el interaction (6d)

and using the simplified mean-field approximation (7) in the TB Hamiltonian. It is

clear from the discussion in the preceeding section that it is not straightforward to

parameterize the hopping amplitudes in terms of UW. We will therefore limit ourselves

to analyzing the effect of (7) on the local Hamiltonian, which can be represented as 2×2

matrix in terms of the two local eg states in the following form:

Hs
local = H̃s

0 − UWn
s (8)

with

H̃s
0 = 1

(
1
2
UW − JH · s

)
− λsQxτx − λsQzτ z . (9)

By identifying (8) with the corresponding MLWF matrix, we obtain the local spin

splitting as a combination of Hund’s rule coupling and el-el interaction:
(
h0aa

)↓ −
(
h0aa

)↑
= U

(J)
W (n↑

aa − n↓
aa) + 2J

(PBE)
H , (10)

from which we can calculate U
(J)
W by averaging over the two orbital characters and

using the previously determined PBE value for the Hund’s rule coupling. Thereby, the

occupation matrix elements in the basis of MLWFs are calculated as

nnm =

∫ EF

−∞

dǫ

∫

BZ

dk
∑

l

(
U

(k)
lm

)∗

δ(ǫ− ǫlk)U
(k)
ln , (11)

where EF is the Fermi energy.

an average of the corresponding eigenvalue differences over all bands and k-points. The maximum and

mean deviation is very similar for all methods and does not exceed 0.37 and 0.12 eV, respectively.
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Table 4. The interaction parameters determined in Model 2. Note, that in Model

2 the on-site parameters are set to the PBE values while the hopping parameters are

set to the values given in table 3. Units: all quantities are in eV except ∆n↑ which is

unit-less.

Interaction parameters

JH ∆ε↑ ∆n↑ U
(J)
W U

(λ)
W ∆J

(λ)
W

PWscf

PBE 1.56 1.09 0.71 - - -

PBE+U 2.16 1.66 0.80 2.40 0.70 0.42

VASP

PBE 1.33 1.04 0.70 - - -

HSE 2.42 3.10 0.89 4.37 2.31 0.51

GW0 1.90 1.80 0.70 2.30 1.09 0.30

In a similar way we can obtain another estimate for the Hubbard parameter,

U
(λ)
W , from the total JT induced splitting within the majority spin eg orbital manifold,

expressed through the difference in eigenvalues of the local Hamiltonian:

∆ε↑ = 2λ↑(PBE)
√

(Qx)2 + (Qz)2 + U
(λ)
W ∆n↑ = ∆ε↑(PBE) + U

(λ)
W ∆n↑ . (12)

Here, ∆n↑ is the difference in majority spin eigenvalues of the MLWF occupation matrix

and we have used the observation that, to a very good approximation, both H̃ 0 and n

can be diagonalized by the same unitary transformation. The difference between the

corresponding transformation angles is less than 0.6◦ for the Pbnm structure. Since

the difference is somewhat larger for the JT(Qx) structure (up to ≈ 6◦) we derive the

interaction parameter U
(λ)
W from the MLWF Hamiltonian of the Pbnm structure. The

resulting values of U
(J)
W and U

(λ)
W are given in table 4.

It can be seen that within PBE+U , the parameter U
(J)
W is almost as large as the

value of U = 3 eV used for the Hubbard parameter within the PBE+U calculation,

whereas the parameter U
(λ)
W is significantly smaller than that. We note that, as discussed

in [32], the Hubbard correction within PBE+U is applied to rather localized atomic-

like orbitals, whereas the parameter UW corresponds to more extended eg-like Wannier

orbitals. The JT splitting is strongly affected by hybridization with the surrounding

oxygen ligands and is thus quite different for atomic-like and extended Wannier states

[32]. As a result, U
(λ)
W is quite different from the U value used within PBE+U , and the

smaller value of U
(λ)
W can thus be related to the fact that the electron-electron interaction

is more screened in the more extended effective eg Wannier orbitals. On the other hand,

the similarity between U
(J)
W and the U value used within PBE+U indicates that the

local spin-splitting is more or less the same for both sets of orbitals, which is consistent

with the view that this splitting is essentially an atomic property. A similar difference

between U
(J)
W and U

(λ)
W is also observed for HSE and GW0. The large values of UW
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delivered by HSE reflects the larger spin splitting and band gap in the corresponding

band structure compared to PBE+U and GW0.

The large difference between the two parameters U
(J)
W and U

(λ)
W also indicates that

it is not possible to map the electron-electron interaction effects manifested in the

on-site matrix corresponding to effective eg orbitals to only one interaction parameter

while using PBE as “noninteracting” reference. Similar conclusions have already been

reached in [32] for the PBE+U case. From the current study we can conclude that

the modification of the local spin splitting (described by U
(J)
W ) and the enhancement

of the JT induced orbital splitting (described by U
(λ)
W ) that arise in the Kohn-Sham or

GW0 quasiparticle band structures due to the beyond-PBE treatment of exchange and

correlation, are not compatible with a simple mean-field Hubbard-like correction to an

otherwise “non-interacting” TB Hamiltonian with two effective eg orbitals per Mn site

and only one parameter describing the electron-electron interaction. This leads to an

important conclusion of the present study with regard to methods such as LDA+U or

LDA+DMFT, which supplement a “non-interacting” Kohn-Sham Hamiltonian with a

Hubbard interaction between a strongly interacting subset of orbitals: using different

methods for obtaining the noninteracting reference can lead to significant differences,

and it is by no means clear whether PBE (GGA) or even LDA always provides the best

starting point for a more sophisticated treatment of correlation effects. Our results also

emphasize the importance of finding improved ways to account for the double counting

correction when using different electronic structures as noninteracting reference.

In order to see how, within the limitations discussed in the preceeding paragraph,

a TB Hamiltonian of the form (6a)-(6d) can reproduce the MLWF band dispersion, we

consider a modified parameterization using U
(λ)
W to model the el-el interactions. Since in

that way the correlation-induced increase of the spin splitting is only partially covered

by the el-el term (7), we correct this by introducing an “empirical” correction to the

Hund’s rule coupling:

∆J
(λ)
W = JH − J

(PBE)
H − 1

4
U

(λ)
W . (13)

Note, that analogously we could choose U
(J)
W as the el-el interaction parameter and define

an appropriate correction to λ↑. However, since the fundamental band gap in LaMnO3

is largely controlled by the JT induced splitting between occupied and unoccupied eg
bands, and since in a TB model for LaMnO3 it seems most desirable to describe the band

gap correctly, we choose U
(λ)
W to model the el-el interactions. If the correction ∆J

(λ)
W is

neglected, the local majority spin bands around the band gap are still described quite

well, even though the splitting with respect to the local minority spin bands will be

underestimated, which might be acceptable for certain applications.

Figure 9 also shows the dispersion calculated from such a modified TB model with

explicit el-el interaction, where the correlation induced change of the spin splitting and

band gap is described by two interaction parameters, U
(λ)
W and ∆J

(λ)
W , while JH, λ

↑, λ↓,

and ηλ are fixed at their respective PBE values. In addition, the hopping amplitudes are

set to the values given in table 3. The band dispersions using these sets of parameters
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(shown as green crosses in figure 9) again almost perfectly follow the MLWF bands.

The agreement between the bands calculated within the two parameterizations (Model

1 and 2) also reflects the transferability of the on-site parameters between the structures

with and without the GFO distortion.

4. Summary

In this paper we have presented a general scheme to parameterize, within a TB

picture, the band structure of the prototypical JT distorted eg perovskite LaMnO3

by means of a suitable downfolding of the ab initio electron dispersion relations onto a

small set of MLWFs. The tabulated TB parameters should provide an interpretative

direction for more sophisticated many-body model Hamiltonian investigations of similar

systems [14, 76, 77, 78].

By comparing the PBE and beyond-PBE findings we can draw the following

conclusions:

(i) Ab initio electronic structure results. We find that all methods consistently

find a Mott-Hubbard insulating state. GW0 provides the best agreement with

experiments in terms of bandgap value, and both GW0 and HSE convey a

satisfactory description of valence and conduction band spectra. While in the

PBE+U and HSE cases a suitable adjustment of the parameters U and amix can

selectively improve the performance with respect to either bandgap or magnetic

exchange interactions, a universal value that provides all quantities with good

accuracy cannot be found. Even though the standard value amix = 0.25 in HSE

seems to provide rather accurate magnetic coupling constants, clearly a smaller amix

is necessary to obtain a better Mott-Hubbard gap. While the two different codes

used in the present study lead only to marginal differences in the Kohn-Sham

band structure and the corresponding TB parameterization, the relative energies

of different magnetic configurations depend on subtle details of the used methods,

which hampers a concise comparison between the different energy functional (it

should be noted however, that the PAW approach is usually considered superior to

pure pseudopotential schemes). Within VASP a value for the Hubbard U between 2-

3 eV leads to similar magnetic coupling along c as HSE, but somewhat stronger FM

coupling within the ab planes. Despite all its well-known limitations when applied

to strongly-correlated materials, PBE does not seem to perform too badly (of course

the fact the we have used the experimental structure helps in that respect, since

PBE is known to fail in properly reproducing the JT distortion in LaMnO3 [60]).

(ii) MLWFs. Despite the difficulties to fully disentangle the effective eg bands from

other bands with similar energies, which are most pronounced within PBE+U and

HSE, the resulting MLWFs and associated ordering (Fig.7) look rather similar and

are in good agreement with the precedent plots of Yin[13]. This represents a further

proof of the quality and reliability of the wannier construction of the eg |3z2 − r2〉
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and |x2 − y2〉 orbitals. Despite these similarities, the differences in the underlying

band structures lead to distinct differences in the Hamilt nian matri xelements in

reciprocal space, and allow for an accurate quantitative analysis of the differences

between the various approximations for the exchange-correlation kernel.

(iii) TB parameterization. We have demonstrated that the methods-derived changes in

the TB parameters due to the different treatment of the el-el exchange-correlation

kernel in conventional and beyond-PBE approaches can be accounted for using

two different routes: (a) Model 1 (ĤTB = Ĥkin + ĤHund + ĤJT). In this model

the TB Hamiltonian does not explicitly incorporate an el-el interaction term. All

changes in the beyond-PBE band structure with respect to the “noninteracting”

PBE bands are integrated in the hopping, JT and Hund parameters (in particular

t↑↑, λ↑, and JH). (b) Model 2 (ĤTB = Ĥkin + ĤHund + ĤJT + Ĥe−e). In this second

type of parameterization we have build in an el-el term in the TB Hamiltonian

explicitly. The el-el interaction effects are treated by parameterizing the on site

Hund and JT parameters into a noninteracting (PBE) and interacting (dependent

on U
(λ)
W and U

(J)
W ) part. Since we found that U

(λ)
W 6= U

(J)
W , in order to achieve a

correct parameterization it is necessary to fix one UW channel (U
(λ)
W ) and evaluate

the changes on the remaining one (∆J
(λ)
W ). Both, Model 1 and 2, yield excellent

TB bands, essentially overlapping with the underlying MLWFs ones.

We note that the different levels of approximation for the non-interacting band

structure can lead to significant changes in the hopping amplitudes, which cannot

easily be accounted for by a local double-counting correction. In addition, we

have also shown that the influence of the beyond-PBE treatment on the model

parameters of the local Hamiltonian cannot be captured by a simple mean-field

Hubbard term with only one interaction parameter. For an accurate many-body

or effective model treatment of LaMnO3 and similar materials it thus seems most

desirable to start from the most realistic single particle band-structure (i.e. not

necessarily LDA or GGA) and use an appropriate double counting correction. The

exact form of such a correction term, however, is still unclear at this point. A

possible alternative solution to correctly treat correlation effects without being

contaminated by the double-counting problem is the GW+DMFT scheme, which

has recently attracted several research groups and will be most likely available in

the next future[79, 80].

In summary, we have shown that MLWFs can be constructed efficiently not only at

conventional DFT level (PBE), but also from hybrid functional (HSE) and quasiparticle

(GW0) wavefunctions, through the creation of an appropriate interface between the

electronic structure code VASP [42, 43] and the publicly available Wannier90 code [53].

Thereby, we have used the well-established PW2WANNIER90 interface as benchmark

at the PBE and PBE+U level [39]. Given the booming application of hybrid DFT and

GW0 calculations for a wide variety of materials for which the possibility to describe the

relevant physics using a minimal basis set is important (these include, e. g., Fe-based
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superconductors [81], cuprates [82] and multiferroics [83, 84]), the VASP2WANNIER90

interface which allows to construct MLWFs directly from the widely-used VASP code,

will provide a valuable tool for future research. From the practical point of view, we

have demonstrated that MLWFs can be efficiently used to accurately interpolate the

HSE and GW0 band structure from the coarse uniform k-points mesh to the desirable

(and dense) symmetry lines, thereby remedying the fundamental practical limitation of

HSE and GW0 scheme in computing energy eigenvalues for selected k-points[52, 85]. We

expect that our study will serve as a reference for future studies involving MLWFs-based

downfolding procedure.
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Appendix: Tight binding model parameterization

In this section, we supply exact definitions for all parameters included in our TB models

and describe how they are obtained from the MLWF Hamiltonian matrix.

In the following, we express the hopping amplitudes tσ,a(R+∆R)b(R) as 2×2 matrices

with respect to the orbital indices: tσ,a(R+∆R)b(R) → tss
′

(∆R). There are 4 different

hoppings parameters which we consider here, the spin-dependent nearest-neighbor

hopping tss, the second-nearest neighbor hopping txy and the second-nearest neighbor

hopping along the x, y, z axes t2z. The nearest-neighbor hopping matrix is expressed as

tss
′

(±ẑ) = −1
2
tss

′

(1 + τ z) , (1.1a)

tss(±x̂) = −1
4
tss(2 · 1−

√
3 · τx − τ z) , (1.1b)

(and analogously for tss
′

(±ŷ), see [31]). The tss which determines hopping amplitudes

within FM ordered planes is via (1.1b) (from the Hamiltonian matrix elements for the

JT(Qx) distorted structure) given as

tss =
(
1
2
hx11 − 3

2
hx22

)s
. (1.2)

In the GFO distorted structure, the nearest-neighbor hopping amplitudes are reduced

by a factor (1− ηst ), where the coefficient ηst is calculated as

ηst = 1− tss[Pbnm]

tss[JT(Qx)]
. (1.3)

The hopping parameters are denoted by the corresponding crystal structure (in square

brackets), for which they are calculated. The t↑↓ parameter, which determines the

hopping amplitude between A-AFM ordered planes, is taken as an average of t↑↑ and

t↓↓. The JT-induced splitting of the nondiagonal elements of the hopping matrix within

the xy plane is incorporated as an additional contribution to the in-plane hopping

∆tss(±x̂) = λ̃Qx
R
(i · τ y) , (1.4)

(and analogously for ∆t(±ŷ)). The λ̃ parameter is determined for the JT(Qx) distorted

structure as

λ̃ =
1

2Qx

(
1
2
(hx12 − hx21)

↑ + 1
2
(hx12 − hx21)

↓
)
, (1.5)

and is also reduced by the (1 − ηst ) factor in the GFO distorted structure. Both, the

second nearest-neighbor hopping txy and the second-nearest neighbor hopping along the

x, y, z axes are determined (from the JT(Qx) distorted structure) as

txy = −1
2

[
(hxy11)

↑ + (hxy11)
↓
]
, (1.6a)

t2z = −1
2

[
(h2z11)

↑ + (h2z11)
↓
]
. (1.6b)

The matrices related to the txy hopping parameter are then given by (see e.g. [50])

t(±x̂± ẑ) = −txy(−1 +
√
3 · τx − τ z) , (1.7a)

t(±x̂± ŷ) = −txy(−1 + 2 · τ z) , (1.7b)
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(and analogously for t(±ŷ ± ẑ)). The matrices related to the t2z hopping parameter

have the same form as (1.1a) and (1.1b). In the GFO distorted structure, the matrix

elements are also reduced by (1− ηst ).

The Hund’s rule coupling strength is determined using (6b) from the orbitally

averaged spin splitting of the Hamiltonian on-site diagonal matrix elements (for the

Pbnm structure)

JH = 1
4

[(
h011 + h022

)↓ −
(
h011 + h022

)↑]
. (1.8)

The (generally spin-dependent) JT coupling parameter λs is determined (from the

JT(Qx) distorted structure) as

λs =
∆εs

2|Qx| , (1.9)

where the JT induced eigenvalue splitting ∆ε of the eg subspace 2× 2 on-site matrix is

calculated as

∆ε =
[(
h011 − h022

)2
+
(
2h012

)2]1/2
. (1.10)

The JT coupling λs is effectively reduced due to the GFO distortion mode (see [31] for

more details) via the ηλ parameter calculated as

ηλ = 1− ∆ε↑[Pbnm]

∆ε↑[JT(Qx)]

|Q[JT(Qx)]|
|Q[Pbnm]| , (1.11)

where |Q| =
√

(Qx)2 + (Qz)2.
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[61] Muñoz D, Harrison N M, and Illas F 2004 Phys. Rev. B 69 085115.

[62] Nohara Y, Yamasaki A, Kobayashi S, and Fujiwara T 2006 Phys. Rev. B 74 064417.

[63] Arima T, Tokura Y, and Torrance J B, 1993 Phys. Rev. B 48 17006.

[64] Jung J H, Kim K H, Eom D J, Noh T W, Choi E J, Yu J, Kwon Y S, Chung Y, 1997 Phys. Rev.

B 55 15489.

[65] Jung J H, Kim K H, Eom D J, Noh T W, Choi E J, Yu J 1998 Phys. Rev. B 57 R11043.
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