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Kurzfassung

Der steigende Weltenergiebedarf fithrt zur Zeit zu grofien Anstrengungen bei For-
schung und Entwicklung mit dem Ziel neue Energieressourcen zu erschliefen. Eine
mogliche Option zur Energiegewinnung in Groflkraftwerken ist die Nutzung der nu-
klearen Fusion, die Wéarme produziert welche mit konventioneller Dampfturbinen-
technologie in Strom umgewandelt werden kann. Die praktische Umsetzung stellt
jedoch eine grofie wissenschaftliche und technologische Herausforderung dar. Die ent-
stehenden Wérmefliisse, die die innere Wand einer Fusionsanlage und besonders den
am starksten belasteten Teil, den Divertor, treffen, sind eines der Themen die zur
Zeit erforscht werden. Dabei wird zwischen statischem Hitzefluss (steady state heat
load, SSHL), der wiahrend des Betriebs kontinuierlich wirkt, und transienten Warme-
lasten (transient heat loads, THL), die dem SSHL tiberlagerte kurzzeitige Ereignisse
darstellen, unterschieden. Die potentiell gefahrlichsten THL wéahrend des norma-
len Betriebs sind Typ I Edge Localised Modes (ELMs). Sie werden im zukiinftigen
Fusionsexperiment ITER voraussichtlich Leistungsdichten von 1 — 10 GWm™2 bei
Pulsdauern von 0.2 — 0.5 ms erreichen. Aufgrund der hohen Wiederholrate werden
mehr als 105 ELM-Ereignisse im Laufe der fiir die Divertorkomponenten vorgesehe-
nen Lebensdauer erwartet. Es existieren jedoch nur Daten iiber das Verhalten von
Materialien bei niedrigen Pulszahlen (typischerweise 100 — 1000).

Die vorliegende Arbeit beschreibt die Entwicklung eines Verfahrens zur Simulati-
on hochfrequenter THL mit Hilfe einer Elektronenstrahlanlage und die an Wolfram
und kohlenstoftbasierten Materialien (carbon fibre composite, CFC) durchgefiihr-
ten Experimente. Das Verfahren arbeitet mit einer Wiederholrate von 25 Hz, daher
mussten aktiv gekiihlte Komponenten entworfen und verwendet werden. Eine neue
Art der Strahlfithrung, kreisformige Belastungsmethode genannt, war ebenfalls ein
Ergebnis des Entwicklungsprozesses. Sie wurde fiir alle nachfolgenden Tests benutzt,
da Schwankungen von Parametern (z. B. der Kammerdruck) bei diesem Verfahren
nur einen geringen Einfluss auf die aufgebrachte Leistungsdichte haben. Die Elek-
tronenstrahlfithrung ist aulerdem flexibel genug um zusétzlich zur THL eine SS-
HL zwischen zwei aufeinander folgenden THL aufzubringen. Das ermoglicht es die
Grundtemperatur der Probenoberflache zu beeinflussen.

Die Materialtests wurden mit Pulszahlen von 10? — 10° und absorbierten Leis-
tungsdichten von bis zu 0.55 GWm™2 auf Wolfram beziehungsweise 0.68 GWm 2
auf CFC durchgefiihrt. Die Oberflichengrundtemperatur wurde mit Hilfe der Finite-
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Element-Methode zuvor berechnet und wahrend der Versuche mit Pyrometern tiber-
priift. Die Schidigungsgrenze von Wolfram liegt unter 0.27 GWm~2, die von CFC
unter 0.68 GWm~2. Bei geringeren Leistungsdichten lieen sich keinerlei Schidigun-
gen bei bis zu 10° (Wolfram) bzw. 10° (CFC) Pulsen feststellen. Im Gegensatz zu
CFC kommt es bei Wolfram zu einer langfristigen Materialermiidung. Die Material-
degradation trat bei hoherer Temperatur frither auf, obwohl urspriinglich erwartet
wurde, dass Wolfram bei héheren Temperaturen aufgrund der hoheren Duktilitat wi-
derstandsféhiger sei. Die naheliegende Erkléarung hierfiir ist, dass erhohte Duktilitét
zu stérkerer Schidigung in Folge von Materialermiidung fiihrt.




Abstract

The increasing world energy needs lead to strong efforts in today’s energy R&D
trying to open up new energy resources. One possible option to access energy in
large scale power plants is to use the process of nuclear fusion to generate heat
and, from that, electricity with conventional steam turbine technology. However,
the realisation is technologically and scientifically very challenging. The heat fluxes
that load the inner walls of a fusion device, especially the most severely loaded
part, the divertor, are one of the issues currently being under investigation. A
distinction is made between steady state heat loads (SSHLs) that are continuously
active during operation and transient heat loads (THLs) that are superimposed
short-time events. The potentially most harmful THLs during normal operation
are type I Edge Localised Modes (ELMs). They are estimated to have a power
density of 1 — 10 GWm™2 for 0.2 — 0.5 ms duration in the upcoming next step fusion
experiment ITER. Because of high pulse repetition frequency more than 105 ELM
events are expected during the foreseen lifetime of divertor components. However,
only data regarding behaviour of materials for a low number of pulses (typically
100 — 1000) exists.

This work describes the development of a procedure to simulate THLs at high
repetition frequency using an electron beam facility and the tests done on tungsten
and carbon-based (carbon fibre composite, CFC) plasma facing materials. The de-
veloped procedure uses a pulse frequency of 25 Hz, hence actively cooled components
are necessary and were designed. A novel electron beam guidance procedure, called
circular loading method, was a result of the developmental process. It was used for
all later tests because it provides a stabilisation of the applied power density against
test parameter fluctuations (e.g. vacuum quality). The electron beam guidance is
flexible enough to provide a SSHL pattern during the interpulse time (between two
successive THLs) additionally to the THL pulses. This allowed to influence the base
temperature of the sample surface.

The material tests were done with pulse numbers of 102 — 10% and absorbed power
densities of up to 0.55 GWm~2 and 0.68 GWm™2 per pulse for tungsten and CFC
materials respectively. The surface base temperature was predicted by finite element
analyses and monitored by pyrometer measurements. Damage thresholds of the
investigated tungsten and CFC were found to be < 0.27 GWm~2 and < 0.68 GWm 2
respectively. Below these power densities no damage/degradation was found for
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ABSTRACT

pulse numbers up to 10% (tungsten) or 10° (CFC). Tungsten showed long term
fatigue, which did not occur in CFC. Although it was expected that tungsten would
be more resistant at higher base temperatures due to higher ductility, it was found
to show earlier degradation at higher temperatures. It is proposed that an increased
ductility leads to stronger fatigue damage.
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1 Introduction

1.1 Nuclear fusion

The physical process of nuclear fusion describes the coalescence of at least two
atomic nuclei to form a single heavier nucleus. It is accompanied by the release or
absorption of energy, depending on the binding energy per nucleon before and after
fusion. Nuclei of lower mass than 52Ni release energy in fusion whereas heavier nuclei
absorb energy, since 52Ni has the highest binding energy per nucleon of all elements
(fig. 1.1) [2]. A high kinetic energy is necessary to overcome the Coulomb repulsion
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50 55 Ej] 85 70

Figure 1.1: Average binding energy per nucleon against mass number of
the strongest bound nucleons [2].

of the positively charged nuclei. This force dominates at long distances, whereas the
attractive short ranged nuclear force dominates at distances of a few nucleon radii.
Although the effect of quantum tunnelling facilitates the reaction, an average kinetic
energy of the order of 10 keV is necessary to enable fusion reactions in a deuterium-—
tritium plasma. The deuterium—tritium fusion reaction (D-T reaction) shows the
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1 INTRODUCTION

lowest necessary temperature/average kinetic energy for starting fusion reactions
(fig. 1.2). It generates a helium nucleus, a free neutron and releases 17.6 MeV

10714 T T
1071 - +++t++++ 4+
4+t +4+ 4+ ]
10-16 - 7 DDDDD@@“WU
o + Tl Ll
£ 107 4+ _ O ° 1
E. 10718 |- ++ = o 7
A + _mf- .
SR Ul o L0 1
[} + i D (o]
< 10729 1 » * ] . N
H ” » O T(D,n)*He +
g W 4«E O ° D(Dn)*He x
< 10-2 | X O D([D,p)T =+ |
& e O o *He(D,p)*He I
107 ¥ O T(T,2n)*He 7
10-24 8 T(p,n)*He o |
O o PHe(T, D)4He
10725 1 1 | 1 1 Lo Lo
1 10 100 1000

Kin. Temperature (kgT) [keV]

Figure 1.2: Fusion reaction rates for several light nuclei against average
kinetic particle energy. The deuterium-tritium reaction has the highest reaction
rate up to a few hundred keV. The plotted data were generated by the analytic
expressions provided by [3].

binding energy, distributed among the end products of the reaction according to the
mass ratio (fig. 1.3):
D+ T — *He (3.5 MeV) +n (14.1 MeV) (1.1)

Some other possible reactions for controlled fusion are:

D+ D — *He (0.82 MeV) +n (2.45 MeV) (1.2)
D+D — T (1.01 MeV) + H (3.02 MeV) (1.3)
D +*He — “He (3.6 MeV) + H (14.7 MeV) (1.4)

The large amount of released energy per fusion reaction and the sun as a model in
nature led to the idea of using controlled fusion for a power plant. D-T fusion is
the preferred reaction for future first generation fusion reactors, because of the high
energy yield and the relatively low temperature needed to get a reasonable reaction

2



1.1 NUCLEAR FUSION

*H 8)\ @ &7@ ‘He + 3.5 MeV
‘%

&
3 @D O n+14.1Mev

Figure 1.3: Deuterium-tritium fusion: Deuterium and tritium form an
intermediate state SHe with a decay width of 0.6 MeV (half life time ~ 5.5 -
10722 ) [4]. Tt decays into a stable He nucleus and a free neutron with kinetic
energies of 3.5 MeV and 14.1 MeV respectively.

rate (fig. 1.2). Also deuterium can easily be extracted from sea water and tritium
can be bred by bombarding a lithium blanket with neutrons from the D-T reaction

itself:

SLi+n — *He (2.05 MeV) + T (2.73 MeV) (1.5)
Li4+n — *He+ T+ n — 247 MeV (1.6)

Since several decades scientists are working on the realisation of controlled fusion.
As it is necessary to heat up the fusion reactants to extremely high temperatures,
all electrons are stripped off of the nuclei (for light elements), forming a hot plasma.
The problem arises how to prevent the plasma from touching any cold matter (e.g.

Figure 1.4: Tokamak devices JET (Joint European Torus, left) and ITER
(Latin for “the way”): JET was constructed between 1977 and 1983. It is the
biggest tokamak device in the world up to now. The construction of ITER, a
next generation tokamak, started January 2007. The first plasma is scheduled
to be ignited in 2019 [5,6].




1 INTRODUCTION

the inner walls of a containment device), possibly damaging the wall and eventually
loosing its kinetic energy. Possible solutions are magnetic or inertial confinement
devices. At the moment magnetic confinement in so called tokamak devices is the
most developed method. Tokamaks are devices of toroidal shape that produce a
strong magnetic field via (superconducting) magnets, in which the plasma is heated,
confined and compressed (fig. 1.4). The biggest fusion experiment up to now, JET
(Joint European Torus), has already reached a peak fusion power of 16.1 MW in
1997 [7]. For detailed information on related topics like the comparison of fusion
energy to other energy sources, world energy need, safety & economic aspects see [8].

The next step fusion device ITER, currently under construction in Cadarache,
France, is an experiment built to prove the viability of fusion as an energy source
and to collect experience, data and technologies for future fusion power plants. The
machine shall achieve a fusion power of 500 MW at a heating power of <50 MW
(Q > 10) and continuous discharges for at least 400 seconds [5,6,9,10].

1.2 Plasma facing materials and components

As previously mentioned, magnetic field confinement prevents the hot plasma from
touching the wall of the vacuum vessel. This confinement is not perfect, on the
contrary, a certain particle loss is necessary to remove the helium (exhaust). This
results in particle and energy fluxes loading the wall. Therefore special compo-
nents protect the structural parts of the device, so called plasma facing components
(PFC). These PFCs consist of an actively cooled heat sink, often made of copper
based material and a plasma facing material (PFM) like beryllium (Be), carbon fibre
composite (CFC) or tungsten (W) [11,12]. Figure 1.5 shows the vacuum vessel of
ITER with the first wall that faces the hot plasma and the divertor, a special part
of the wall that has to withstand the highest heat and particle fluxes. PFMs have
to meet several requirements:

High thermal conductivity and high melting/sublimation point

In order to absorb the incoming heat flux an outstanding thermal conductivity is
often considered as most important. It should also not decrease much with temper-
ature. Additionally a high melting/sublimation point helps to prevent melting due
to local overheating and early evaporation at high temperatures due to low vapour
pressure. Be, CFC and W have thermal conductivities of around 190 Wm™'K~1,
< 500 Wm™K~! and 170 Wm™'K~! at RT and melting/sublimation points of
1560 K, 3000 — 4500 K and 3700 K, respectively [13-17].

Plasma compatibility

Atoms of the PFM contaminate the plasma and can lead to poor plasma perfor-
mance. Especially atoms with a high atomic number (Z), which are not completely
ionised, convert kinetic energy of fuel nuclei into radiation (by electron excitation and

4



1.2 PLASMA FACING MATERIALS AND COMPONENTS

deexcitation) which escapes the magnetic confinement. This is an effective plasma
cooling mechanism and can even lead to a complete termination of the plasma pulse.
Thus maximum allowed concentration limits must be observed. The use of high-Z
materials like tungsten requires more care and plasma control to ensure a low core
concentration of atoms of PFMs (e.g. < few 1075 for tungsten). High-Z wall mate-
rials also limit the operational space compared to low-Z materials [17-19].

vacuum vessel

Figure 1.5: ITER vacuum vessel cross section: Beryllium is planned
as PFM for the first wall, while CFC and tungsten will be used for the first
configuration of the divertor. In later stages of operation a full tungsten divertor
will be used [5]. Most recently the idea came up to directly start with a full
tungsten divertor in order to save the costs for the second one. However, this
divertor would have to sustain twice as long as planned before.

Sputtering resistance

High resistance against physical and chemical sputtering is of importance to lower
the erosion rate of a PFM [20]. The aforementioned plasma contamination is also
influenced by the thresholds and yields of these processes. Chemical sputtering can
lead to the formation of undesirable phases and has influence on the Tritium inven-
tory in the machine.

Neutron irradiation resistance

Volumetric neutron irradiation is a serious problem for future plasma facing and
structural materials because the properties of the materials are often drastically
changed by the irradiation. The thermal conductivity of CFC is a good example:

5



1 INTRODUCTION

as shown in [15] it is reduced by a factor of up to 5 for a neutron damage of 0.2 dpa
(1 dpa'/0.6 dpa is the expected dose for the ITER first wall/divertor [21], > 150 dpa
for future commercial reactors [22]). Further investigations of material behaviour
under application relevant neutron irradiation conditions are necessary to evaluate
the property changes and other effects like swelling and embrittlement. An overview
of the existing database is given in [23].

Neutron activation/transmutation resistance

Activation by neutrons is an important concern with respect to radioactive waste
generation and change of material properties due to transmutation and possible sub-
sequent formation of phases in the PFM. Materials in a fusion device or reactor that
are exposed to neutron irradiation have to be carefully chosen in order to avoid long
term radioactive waste [24].

Tritium uptake

The uptake of tritium is a criterion mainly because of the limitation of radioactive
inventory of the machine. More tritium retained in the walls means less tritium that
is available for the fusion reaction. At the moment a maximum of 700 g of tritium
is the designated (administrative) limit for the ITER machine [25,26].

Additionally PFMs have to operate at a broad temperature range from coolant
inlet temperature up to 2000 or even 3000 K during transients. No known material
meets all these requirements at a time, but the above mentioned materials meet
most of them. Table 1.1 shows their advantages and disadvantages.

11 dpa £10% neutrons/m? for low Z materials
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1 INTRODUCTION

1.3 Steady state & transient (heat) loads

The first wall in ITER will face (apart from particle flux) a continuous heat flux in
the order of 1 MWm~2 in normal (quasi-stationary) plasma operation mode, while
the divertor will be exposed to power densities of approximately < 10 MWm~2 (with
occasional slow transients of < 20 MWm™2 for < 10 s). These steady state heat
loads (SSHLs) may vary spatially and temporally and therefore result in surface
temperatures that depend on time and the position of the PFCs. Additionally, the
SSHL is superimposed by transient heat loads in the form of Edge Localised Modes
(ELMs) during normal operation [9,29-33]. ELMs are classified into three types [34]:
Type I ELMs:

These events are short (0.2 — 0.5 ms) but intense outbursts that release 2 — 6 % of
the plasma stored energy. They repeat with a frequency of several Hz and are also
called “giant” ELMs. The repetition frequency increases with increasing plasma
heating power. The power density of ELMs in ITER is estimated to be between
several tenth up to several ten GWm~=2 [30,35-38].

Type II ELMs:

These ELMs are weaker than type I ELMs and have a higher frequency up to several
thousand Hz. They are also called “grassy” ELMs [36].

Type III ELMs:

The outbursts are weak and frequent. As the repetition frequency decreases with
increasing plasma heating power, these ELMs disappear at some point. They are
also called “small” ELMs [36].
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Figure 1.6: Thermal loads on the divertor expected in ITER [30,31].




1.4 SIMULATING THERMAL LOADS OUTSIDE FUSION DEVICES

In the frame of this work type I ELMs are of interest because they pose the biggest
danger for the PFMs. A frequency of several Hz for the occurrence of these ELMs
was predicted for ITER. However mitigation techniques are necessary and topic of
current research. They may lead to reduced intensity and increased frequency of
several ten Hz or even a complete suppression of ELMs [12,33,39].

Apart from loads under normal operation conditions, a loss of plasma control
can lead to disruptions and vertical displacement events (VDEs) or plasma contam-
ination causes an early termination of the discharge (disruption). Both off-normal
events are transients and deploy a large amount of energy on the wall/divertor PFMs.
Tests already showed that they have to be avoided (preferably completely) as they
are too severe for any material to withstand without degradation [11]. VDEs and
disruptions are estimated to occur only in < 1 % and < 10 % of the ITER discharges,
respectively [40].

Figure 1.6 depicts the different loads in a time vs. power density diagram. It
is planned to replace the ITER divertor after 3000 discharges. Each discharge lasts
for approximately 400 seconds, thus it has to withstand 3000 thermal fatigue cycles
with at least 400 ELMs each. This results in > 10 ELMs during the lifetime of
PFCs.

Table 1.2: Thermal loads expected for the ITER divertor/first wall [9,17,
30-33,40]

Steady state ELMs VDEs disruptions
Power density

5-20) 1073 1-10 0.2 -0.6 > 10
(GWm™2) ( )
Duration (s) 400 (0.1-0.5)-107% 0.1-03 (0.1-5)-1073
Energy density

— 2 - ~

(MJm-2) 0 5 60 > 30
Frequency continuous >1-10 Hz <1% <10 %

1.4 Simulating thermal loads outside fusion de-
vices

Several machines are used in order to investigate material behaviour under different
irradiation conditions namely neutral or ion beam facilities, laser facilities, electron
beam devices, infra-red heaters and arc discharge facilities. These machines differ
in many aspects, like the kind of energy input, pulse duration and intensity, maxi-
mum irradiation area and penetration depth. The thermal loading scenarios can be
divided into two categories:




1 INTRODUCTION

Thermal shock tests

These tests simulate the impact of events like ELMs, VDEs and disruptions. They
have high intensities (tenth to several GWm™2, table 1.2) that have to be reached
within a very short time period (sub-millisecond to tenth of a second). Simulation
devices have to provide a high power density as well as a strong power rise and
decrease. A heater can be used to preheat the samples in order to get results for
different base temperatures. Depending on pulse frequency and since the effects of
thermal shock tests are limited to the surface of the PFM, an active cooling system
is not mandatory. If the influence of neutrons should be studied the machine must
be located in a hot cell.

Thermal fatigue and screening tests

Fatigue tests investigate the behaviour of a complete PFC during thermal cycling
under SSHL. This comprises the heat dissipation capability, the strength and ther-
mal fatigue resistance of the joint between PFM and heat sink, possibly also before
and after neutron irradiation. The required power densities are typically 3 magni-
tudes smaller (1 — 20 MWm™2, table 1.2) than for thermal shock tests. The tested
components and loaded areas can be very large, so high power machines are as well
necessary, but the power density of the beam spot must not be high (or a fast beam
scanning should be used) to avoid local overheating. Fast power rise and decrease,
like for thermal shock tests, are not of great importance. A powerful cooling system
is used to dissipate the generated heat. This system can be a standard low pressure
water cooling circuit or it can be more sophisticated, providing high pressure, vari-
able coolant temperature or using advanced cooling e.g. with helium.

Neutral or ion beam devices are able to provide particle fluxes and hence effects
like physical and chemical sputtering/erosion and vapour shielding can be investi-
gated. These machines need some time (seconds to minutes) to recover after a dis-
charge (e.g. recharge capacitors). Electron beam or laser machines usually achieve
higher power densities, have higher flexibility and higher repetition rates. They are
therefore often used for thermal shock tests.

1.5 Thermally induced material damage

The interaction of plasma and neutrons with the PFMs leads to several effects, some
of which were described in 1.2 and 1.3. The thermal loads can lead to roughening,
swelling, cracking, erosion and melting/sublimation, depending on material, tem-
perature, load intensity etc. Most of the effects are caused by thermally induced
mechanical stress. In a fusion device degradation by heat loads mainly occurs in a
surface layer and the joint. Test facilities (section 1.4) do not always deposit energy
on the surface only, but have a penetration depth and hence the loading is partially
volumetric. For electron beam facilities the beam penetration depth depends on the

10



1.5 THERMALLY INDUCED MATERIAL DAMAGE

electron energy which is determined by the acceleration voltage (U,, see 2.1.1 and
2.1.2) and the material (mainly its density).

The thermal response of CFC and tungsten differs: Both materials crack, but
CFC shows mainly erosion by brittle destruction [41] while tungsten starts to deform
plastically to compensate high stresses. In the case of transient loads on tungsten
the heated surface material is often surrounded by cooler (unloaded) material. This
leads to compressive stress as the loaded material is expanding thermally, but is
constrained by the rigid cool material. In case of exceeding the yield strength, ir-
reversible plastic deformation of the hot region is the subsequent step, releasing
part of the stress. After the transient event the material cools down and shrinks
back, but the remaining deformation (strain) prevents it from returning back to the
initial state, thus tensile stresses occur. When they exceed the tensile strength of
the material cracking occurs, preferably at weak locations like grain boundaries. As
cracks follow the grain boundaries it is possible that grains are eroded by an encom-
passing crack. Hence material degradation can be different for the same conditions
depending on the microstructure of the material.

Depositing even higher intensity loads can lead to melting and melt layer for-
mation. Melt droplets and layers are highly unwanted as they start to move (e.g.
due to electromagnetic forces) and resolidify, thus transporting the armour material
away from the most severely loaded areas or bridging castellations. A melt layer
loss of 0.07 pm/pulse found in plasma gun experiments [42] with 0.5 ms pulses of
1.5 MJm~2 would result in 70 mm total loss after 10° ELM loads (about ten times
the tile thickness). Splashes of molten tungsten may also contaminate the plasma
and initiate plasma disruptions.

11
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1.6 SCOPE OF WORK

1.6 Scope of work

In about ten years the international experimental fusion reactor ITER will go into
operation. The divertor and the first wall of this machine will be subjected to tran-
sient and steady state heat loads. Investigations of different materials (especially
beryllium, CFC and tungsten/tungsten alloys), their damage thresholds in general,
cracking or melting thresholds in particular and the influence of geometry (castella-
tion, shaping), plasma exposure (H, He, mixed), neutron irradiation, etc. on these
thresholds are current research topics. It is necessary to know these limits and un-
derstand material behaviour in order to assess the lifetime of components, be aware
of operational limits, find better PFMs and optimise the design of PFCs for ITER
and future reactors.

Fatigue tests of components with steady state heat fluxes and cycle numbers
of ITER relevant ranges are widely used for investigations and qualification tests.
Although the PFCs are close to their limits, it seems technologically feasible to
build a divertor that can withstand several thousand ITER discharges regarding
the SSHL [43]. However, the impact of transient heat loads and 14 MeV neutron
irradiation are two factors, which are much more difficult to investigate. In current
research projects neutron irradiation is simulated by using neutrons from fission
reactors, which do not provide the correct energy spectrum and only moderate
fluxes. To face this problem the International Fusion Materials Irradiation Facility
(IFMIF) is planned, which should be able to provide neutrons with a fusion relevant
spectrum and a flux of about 10" m~2s~! [44].

Transient heat loads are investigated by the same or similar machines used for
steady state tests. These test facilities have not yet proven the capability to apply
transient loads with ITER relevant intensities and frequencies at the same time (not
to mention simultaneous SSHL). Hence tests performed so far apply up to 1000
pulses, 10000 at most in occasional experiments, but the divertor in ITER may
be subjected to more than 10° transient events of ELM type. In contrast to other
transients, which show a loss of control of the plasma or a plasma contamination,
ELMs occur in normal operation mode. The impact of such a high number of
transient loads is unknown. It is expected that the thresholds will be lower for
such high pulse numbers compared to the known thresholds found for 100 — 1000
pulses. Recent research shows that transients of the ELM type can be mitigated and
even completely suppressed [39,45,46]. However, as ITER will be an experimental
facility it will not be operated in just one or few special (ELM free) configurations
and ELMs will pose a threat to the PFCs.

Scope of this work was to make high pulse number tests accessible using the elec-
tron beam facility JUDITH 2 in Forschungszentrum Jillich (Germany). JUDITH 2
is characterised by a very flexible beam guidance system that was considered to be
appropriate for the task. It allows not only the application of transient heat loads
but also the simultaneous simulation of a steady state heat load. Hence, material

13
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behaviour should be investigated at different surface base temperatures. The facil-
ity also provides the necessary power density (this was assumed because of earlier
studies [1]), and an active cooling circuit that allows ITER-like cooling. First, cal-
culations regarding the energy deposition by the electron beam should be made to
develop a fundamental understanding of the load patterns when using the electron
beam. The circular beam pattern, used in all later experiments, was an outcome
of these calculations (section 3.4). The width of the beam depends on the opera-
tional mode and is essential for the achieved power density, therefore, a campaign
was planned to measure the beam profile (section 3.5). In order to simulate a high
number of transient events high frequencies are necessary. This required the de-
velopment of actively cooled components (section 3.1). The component geometry
should be integrated into a finite element model to predict surface temperatures
(section 2.4) and the results should be compared to pyrometer measurements of
the surface temperature development in order to ensure the correct application of
the loads (section 2.2). First tests were planned as proof of principle (section 3.3).
After obtaining a working test procedure, tests on tungsten and CFC can now be
performed to explore damage thresholds and observe the development of material
degradation with increasing cycle number (chapter 5). This degradation was inves-
tigated and quantified by different post mortem analysis methods (section 2.3).
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2 Test facilities and methods

2.1 Electron beam test facilities

The electron beam machines JUDITH 1 (JUelich DIvertor Test facility in the Hot
cells) and JUDITH 2 were used in this work and are described below. However two
general aspects should be discussed before.

First, the penetration depth of the electrons (or the energy distribution depth, as
considered here) depends on the acceleration voltage. For JUDITH 1 and JUDITH 2
the typical values are UJ! = 120 kV and UJ? = 50 kV, corresponding to penetration
depths in tungsten of ~ 7 pm and ~ 5 pm, respectively. For CFC these values are
higher: =~ 90 pm and = 25 pum respectively, because of the low density of carbon.
When the electron beam reaches this depth more than 95 % of the absorbed beam
energy has been deposited [47,48].

Second, the electron beam is partially reflected (backscattered electrons) and
therefore only a fraction of the beam energy is actually absorbed. This energy
reflection strongly depends on the material. For tungsten and carbon values of
Rw = 0.45 and R¢ = 0.03 are used. These values were obtained by Monte-Carlo-
simulation for the pure elements [49]. Literature values for tungsten vary between
0.38 and 0.5 [48,50] and recent experiments in JUDITH 1 confirm the value of the
Monte-Carlo-simulation [51].

2.1.1 JUDITH 1

JUDITH 1 is located in a hot cell and is licensed for tests of radioactive and toxic
materials and components. It has a maximum power of 60 kW and an acceleration
voltage of up to 150 kV (fig. 2.1). Because of better machine stability 120 kV are
used, reducing the maximum power to 48 kW. The machine can simulate transient
as well as steady state heat loads. For the latter active cooling can be performed
with water at room temperature at a maximum flow rate of 60 1/min.

The beam diameter is small, with a FWHM of ~ 1 mm [52]. A triangular signal
is used to sweep the sample surface. The typical pulse duration for an ELM-like
experiment (and at the same time minimum pulse duration) is 1 ms. The beam path
is defined by the dimensions in x— and y—direction and the sweep frequencies f, and
f,. Such a beam path is shown in figure 2.2 along with the resulting time dependent
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Figure 2.1: Schematic drawing and photo of the electron beam facility
JUDITH 1. The photo shows the machine, located in a hot cell.
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Figure 2.2: Electron beam path and applied power density for an
experiment on a 4x4 mm? tungsten surface in JUDITH 1 (P = 11 kW, f, =
31 kHz, f, = 40 kHz, Rw = 0.45, At = 1 ms). Odd frequencies are chosen to
achieve a homogeneous loading. The top pictures show the path after 50 ps,
200 ps and 1000 ps, the bottom picture shows the corresponding power density
vs. time diagram for the blue spot in the centre of the loaded area. The average
absorbed power density there is 0.38 GWm™2.

power density for the centre of the loaded area. The test procedure relies on the
fast scanning: Although the beam centre power density is Lo > 5 GWm~2 (for the
shown example of 11 kW power) the scan in figure 2.2 distributes the energy in the
loaded area and creates an average absorbed power density of ~ 0.38 GWm~2. The
example given was calculated for a tungsten surface (Rw = 0.45).
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2.1 ELECTRON BEAM TEST FACILITIES

2.1.2 JUDITH 2

The electron beam facility JUDITH 2 consists of a cylindrical vacuum chamber (by
“Trinos Vakuum-Systeme GmbH”) with an EH800V electron beam gun (by “Von
Ardenne Anlagentechnik GmbH”) of 200 kW maximum power (fig. 2.3). The work-
ing acceleration voltage can be adjusted between 40-60 kV. Originally the machine
was designed (and is used) for fatigue and screening tests of large components. It is
equipped with a water cooling system that allows adjusting the water temperature
between room temperature and 100 °C, with pressures up to 30 bar (3 MPa), flow
rates of up to 200 1/min and a total cooling power of 150 kW [53]. The electron

EB gun
ports for

diagnostics
: l door/carrier |

_____ system

cooling ———

circuit D | L

Figure 2.3: The electron beam facility JUDITH 2: Schematic view on
the left, with opened door/specimen carrier system and picture of the machine
on the right.

beam is guided via focussing magnetic lenses Ly and Ly and a deflecting lens [1]
that are controlled by a program following x— and y—coordinates of a command file
(standard ASCII file). The dwell time on a spot can be defined between 5 jis and 1 s.
In contrast to JUDITH 1 the beam path can be chosen freely via the coordinates
written into the command file. In order to simulate a steady state heat load a scan-
ning path can be programmed that is used with a defocused beam to prevent local
overheating. However, to simulate transient events special paths were developed in
the course of this work. For this also the knowledge of the beam profile is crucial to
determine the beam power density (sections 3.2 & 3.5).

JUDITH 2 is licensed for tests with toxic materials like beryllium (e.g. first wall
prototype components for ITER).

More detailed descriptions of JUDITH 2 can be found in [1,54,55]. The newest
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machine improvement is the installation of a pressure controller for the main cham-
ber.

2.2 Temperature measurement by pyrometers

To measure surface temperatures during tests different pyrometers were used. A
two wavelength pyrometer type QKTR 1075 from Maurer GmbH monitored the
surface base temperature. Its time resolution of 20 ms prevented an observation of
the simulated transients (At = 0.5 ms), but gives a good estimate of the surface
base temperature. Because of the two wavelength technique the emissivity is of less
importance. However, this is only valid if the emissivity of the object does not differ
much for the used wavelengths (grey body assumption). In general this is not the
case, but the wavelength ranges used (1.4 —1.75 pm, 1.6 — 1.75 pm) lie close together
to minimise the error.

A second pyrometer was used to resolve the fast events. The KMGA 740-USB
from Kleiber has a time resolution of 10 s covering a range of 350 — 3500 °C and can
easily monitor single transients. Hence it was used to check the correct application of
transients by the test procedure and the temperature development during and after
a transient. The device operates with a single wavelength range of 2 — 2.5 nm. A
comparison of the base temperature measured by the (nearly) emissivity independent
two colour pyrometer and the base temperature shown by the fast pyrometer allowed
to determine an emissivity value that could be used for the fast pyrometer. As this
value also depends on temperature the peak values (several hundred degrees higher
than the base temperature) recorded by the fast pyrometer have a bigger error
than the base temperature values. Tungsten emissivity increases with increasing
temperature [13], hence the peak values are underestimated by the device. One
should also note that measurements at the beginning of an experiment are more
reliable, because the surface morphology (and hence the emissivity) can change due
to induced damage.

An approximation of the temperature uncertainty due to the uncertainty of emis-
sivity is provided by [56]:

AT A Ae
T 7 Bhuax €

(2.1)

with the peak wavelength Aj.x and the used spectral wavelength A. The peak
wavelength follows from Wien’s displacement law and relates to the temperature of

a black body by:
C3

)\max - m
T

with Wien’s displacement constant cz = 2.8977685(51) - 1073 m - K.
Measured temperatures were compared with the values obtained by finite element
simulation (chapter 5).
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2.3 Post mortem examination methods

2.3.1 Imaging techniques

Surfaces of tested samples were investigated by different imaging techniques. The
chosen methods depended on the damage. For roughened surfaces light microscopy
and laser profilometry were suitable to characterise and document the roughness.
The laser profilometer (Polaris from UBM Messtechnik GmbH) can measure surface
elevations of £500 pm with an accuracy of 10 nm using the reflection of a 670 nm
laser. In most measurements a 3D surface topography with a lateral resolution of
4 pm in x— and y—direction was recorded. The roughness parameter R,, which was
used to quantify the roughness, is defined as the arithmetic average of the deviation
from the average height (z)

Ro= 37 2 3 el ) = () (2:2)
(2) = ﬁ Zl le(xmvyn) (2.3)

Cracked surfaces were investigated best by scanning electron microscopy, mainly
to investigate the morphology of crack edges, extreme roughening and melting
and to distinguish strong roughening from cracks. Often both, secondary electron
(SE) images and backscattered electron (BSE) images, were made. Secondary elec-
trons mainly provide topographic information, while backscattered electrons provide
information about chemical composition (heavier elements reflect more electrons
and hence appear brighter). Backscattered electrons were also used for Electron
Backscatter Diffraction (EBSD) to investigate the crystallographic orientation of a
roughened surface area (section 5.2.2). This technique uses the patterns formed by
electrons backscattered from different atomic lattice planes according to the Bragg
condition to examine the crystallographic orientation of individual grains. A flat
(polished) sample surface is crucial in order to get good results with this method.

2.3.2 Metallographic analysis

The crack depth is of particular interest to characterise the development (if any)
of material deterioration. For this analysis cross sections of cracked samples were
prepared. The sample is cut (by diamond wire cutting) leaving 2-3 mm of material
for grinding and polishing. Grinding with SiC-paper and polishing with diamond
suspension of 6-0.25 pm particle size reveals the cracks. The last preparation step
was etching with a solution of NHs, HoO4 and pure water (mixing ratio 1:2:7), giving
a better visibility of cracks and grain structure/boundaries. Light microscope images
were taken before and after etching, since it is sometimes easier to distinguish a crack
from a grain boundary in the un-etched picture.
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50 pm

Figure 2.4: Light microscope image of a cross section of a cracked
tungsten surface before and after etching.

2.4 Finite element temperature calculations

The finite element method (FEM) is a numerical technique mainly used to approx-
imate solutions for partial differential equations. It it widely used in engineering
and technology fields, for example the automotive and aeronautical industry, to cal-
culate mechanical stresses, displacements, temperatures, flows of fluids etc. as well
as their respective changes with time. In this work the finite element calculation
software ANSYS 12.0.1 was used to predict the surface temperatures during exper-
iments. First, the base temperature was of interest. The base temperature is the
surface temperature immediately before a THL. It is determined by the thermal
properties of the tested material, the sample geometry, the cooling power and the
energy (SSHL + THL) intake. Because of the results of the FEM simulations the
two wavelength pyrometer mentioned above (sec. 2.2) was chosen (it covered the
appropriate temperature range). Second, the time necessary to achieve a dynamic
equilibrium between heating and cooling should be determined (fig. 5.5). Third,
a good estimation of the temperatures during a THL was of interest, especially to
know the peak temperature. This temperature could not be measured by pyrome-
ter, because of temperature dependence of the emissivity and insufficient positioning
precision of the pyrometer spot/loading spot.
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To develop a test procedure for high cycle ELM-like loading with JUDITH 2 was
a major aspect of this work. This chapter describes the development that led to
the final test procedure. JUDITH 2 was not designed for this kind of tests and
some experience with the machine had to be gained in order to achieve the desired
result. Mock up design changed over time along with the development of the method
(section 3.1).

The first tests showed the necessity for a sophisticated guidance of the beam
on the sample surface. Therefore a circular pattern (section 3.4) was developed. It
required more precise data on the beam diameter than existing at that point. This
lead to improved beam diameter measurements (section 3.5) that provided the data
for the final test procedure (section 3.6).

3.1 Mock up design development
In first tests an actively cooled flat tile module with a copper alloy heat sink was

used (fig. 3.1). The PFM was cut from pure rolled tungsten plates (ITER reference
grade [57]) with tile sizes of 12 x 20 x 5 mm?® and brazed to the heat sink. This

Figure 3.1: First mock up geometry: 18 tungsten tiles (rolled plate ITER
grade) brazed to a copper cooling block, supported by a steel structure.
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module was already used for thermal fatigue tests, but showed no severe failure and
only a fine superficial crack network visible in SEM pictures. This was regarded as
sufficient for some preliminary tests.

A new sample geometry was designed for the second campaign (fig. 3.2). As
shown in chapter 3.3 the beam guidance was not satisfactory in the first experiments,
hence the new tiles were designed with a larger area, facilitating the aiming with the
beam. Three tiles were placed in a row, separated by gaps that allowed some thermal
expansion during brazing. The tiles were separated by a significant distance in case

Figure 3.2: Second mock up geometry: Three tungsten tiles (20 x 20 x
5 mm?) were brazed on a copper cooling block with a silver—copper solder.

they were used for independent experiments. The cooling structure was made of
pure copper, the tungsten tiles are again made from pure tungsten, but of a different
grade, described in section 4.1. They were brazed to the copper with a silver based
solder foil as described in [58]. Smooth wetting and sound joints were achieved with
this solder. This was verified by metallographic investigations of the cross section
(fig. 3.3). The verification was mainly done because of the relatively big joint area
that leads to higher stresses compared to the brazing tests done in [58].

The third design is an optimisation of the second. The materials did not change,
only the geometry. It was optimised for the brazing process (deeper pools) and
the mounting in JUDITH 2 (thicker cooling tube wall for higher stability). The
tungsten tiles were downscaled to 12 x 12 x 5 mm? as this is the standard specimen
size used in many thermal shock tests in JUDITH 1 and in order to save material.
The experience gained during the tests on the second design and the use of an aiming
procedure allowed to decrease the size, because it seemed feasible to hit samples of
this small area. The inner tube diameter was 8 mm, the distance between joint and
tube inner wall 5.5 mm. All final experiments were performed with this design or
with a similar design that had an additional place for a steel tile (fig. 3.4, 3.27).
This steel tile was used for aiming (see sections 3.3 and 3.6 for the different aiming
procedures).
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100 pm

Figure 3.3: Light microscope image of a cross section of the braze joint
between copper heat sink and the PFM tungsten with Ag—based solder.

g

Figure 3.4: Third mock up geometry: Three tungsten tiles (12 x 12 X
5 mm?) were brazed on a copper cooling block. A later design included a place
for a fourth tile. A steel tile (same size as the tungsten tiles) was put in this
place and used for aiming with the beam (fig. 3.27 and appendix B.1).
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3.2 Beam profile and guidance

Simulation of ELM-like heat loads with electron beams leads to the problem of a ho-
mogeneous loading. The electron beams of JUDITH 1 and JUDITH 2 have a Gaus-
sian shape, meaning energy /power is distributed as shown in figure 3.5. JUDITH 1
solves this problem by scanning at high frequencies (see 2.1.1), thus loosing flex-
ibility but gaining a fairly homogeneously loaded area. The freely programmable
beam path of JUDITH 2 makes it necessary to carefully design the experiment and
to investigate the generated energy distribution beforehand. A detailed knowledge
of the beam profile and guidance is crucial.

The aim of a homogeneously loaded area of a certain size is of interest because
post mortem analysis and clear results depend on it. However, ELMs do actually
not load PFCs homogeneously, but have a so called “footprint” of several millimetres
width [33]. A limited loading area, surrounded by unloaded material is hence highly
application relevant.

First beam shape measurements [1] with JUDITH 2 showed that the profile
depends on various parameters: adjusted machine power, voltage, vacuum pressure,
z-height (distance from electron source) and magnetic lens currents. These currents
(I(Ly) and I(Ly)) are given as percentage values of the maximum possible current.

The measurements also showed that the beam profile can be approximated by a
Gaussian function and that the highest power densities are not achieved at highest
machine power. The beam focussing is better at lower power thus allowing higher
power densities. On the other hand, adjusting the machine power to values lower
than ~ 40 kW is only possible when switching to a mode with slow power control
(so called TL-mode [1,55]). In this mode the machine power can fluctuate and also
needs several seconds at the beginning of an experiment to achieve full power. All
measurements with JUDITH 2 were hence performed in the fast SL-mode.

The power density L of a Gaussian beam in a (x,y)-plane perpendicular to the
beam direction is given by:

x2+y?
L(xy) =Lo-e 2 (3.1)
P
Lo = 3.2
07 2702 (32)

Ly is the power density in the centre of the beam, o the standard deviation (here:
characteristic beam width) and P is the machine power. Calculations can be made
to figure out the exact loading conditions at every spot of the sample and at each
time point during the loading cycle. To facilitate these calculations a program called
“Beambam” was developed.

The program is able to switch between a continuous scan mode, which is suitable
for calculations for JUDITH 1 tests (fig. 2.2), and a point—to—point scan mode for
JUDITH 2 experiments (fig. 3.8). Continuous scan mode is characterised by four
parameters: The deflection frequency of the electron beam and the dimension of the
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Figure 3.5: Gaussian power density distribution of the electron beam in
JUDITH 2 at 44 kW with a reflection coefficient of Ry = 0.45 (for a tungsten
surface). On the right side: Loss of part of the beam due to the geometry. This
loss has to be considered when calculating a mean power or energy density for
the sample.

sample, both for x— and y-direction.

Point—to—point scan mode uses a data file that contains a sequence of x— and
y—positions for the beam (fig. 3.8). The dwell time for these “spots” is also defined in
the file. In Beambam, individual dwell times for the spots are allowed. In the beam
guidance software of JUDITH 2 the dwell time is fixed and identical for all spots.
To circumvent this restriction, one can choose a small dwell time and repeat a point
several times in the path file to accumulate dwell time for this point. Beambam can
convert a point—to—point path file to a machine readable file for the use with the
JUDITH 2 beam guidance software. However, any dwell time information is lost
and the user has to set it in the beam guidance software.

For the experimental setup the following data are necessary: electron beam
parameters, sample dimensions, information about positions (e.g. number of tiles
on the sample, gaps) and the aforementioned scan path. The program assumes a
rectangular sample holder with a sample consisting of an arbitrary number of tiles,
ordered in rows and columns, separated by gaps. Two examples are shown in figure
3.7. The user has to input the tile and sample holder dimensions, as well as the
number of rows and columns and the gap width to define the sample. Everything is
defined in top view, the z-dimension is neglected. A point of interest (POI), a line
of interest (LOI) and a region of interest (ROI) can be defined to get information
about, for example, power density at that point/line/region. The coordinate system
for all these positions and dimensions has its point of origin in the lower left corner
of the setup (fig. 3.7). The program can generate pictures (via the software gnuplot),
showing the path file on the sample (fig. 2.2, 3.6, 3.8, 3.9), energy density (fig. 3.6)
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Figure 3.6: Beambam user interface. The main program window is shown
in the upper left corner. Also shown: The visualisation of a point-to—point
beam path (red) with the point of interest (blue) (upper right), the energy
density distribution for one of the tiles (lower right) and the power density vs.
time diagram for the point of interest (lower left).

and power density maps (fig. 3.10) or power density vs. time diagrams for the POI
(fig. 2.2).

The first experiments used a simple pattern: several single spots hit a tungsten
tile with a dwell time of 0.5 ms each. Every spot represented an ELM-like loading.
The different number of spots on a tile resulted in different average heat loads
and hence different surface temperatures. Beambam was first used to calculate
the average power density, taking into account losses by geometry (fig. 3.5) and
electron reflection. Second it calculated the beam centre power densities using the
beam diameters of [1]. These first tests provided valuable results about the beam
guidance, that led to the insight that an improved loading pattern was necessary.
The novel circular beam loading pattern (section 3.4) has a similar feature to the
JUDITH 1 sweeping tests: the beam is moving during the event. One ELM-like
load was hence realised by the application of a lot of spots with the minimum dwell
time of 5 ps.
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Figure 3.7: Top view of two mock ups. All dimensions are given in mm.
Cooling tubes are ignored as they are not of interest for the surface loads. The
tiles are coloured in blue, the sample in red and the (optional) sample holder

in grey.

#1
13.8,10,0.005

#:
36.713,7.313,0.005
29.400,6.200,0.005
42.087,7,313,0,005
43.200,10.000,0.005
42.087,12.687,0.005
39.400,13.800,0.005
26.713,12.687,0.005
35.600,10.000,0.005
35.889,8.546,0.005
37.046,6.489,0.005
40.854,6.489,0.005
42,911, 8,546, 0. 005
42.011,11.454,0.005
40.854,13.511,0.005
27.046,13.511,0.005
35.880,11.454,0.005
r,16,9

1]

LI:J

y [mm]

100

80

60

40 |

20 t

20

60 80 100 120 140
X [mm]

Figure 3.8: Point—to—point path file and beam path. The complete
file produces the path on the right (the coordinates on the left only determine
the two circular structures). The “r” command with the two parameters is
interpreted as “repeat the last [parameter 1] points additional [parameter 2]
times”. Lines beginning with '#’ are ignored (comment line). The sample
dimensions are depicted in figure 3.7b, the coordinates in the file are given
relative to the lower left corner of tile 1.
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3.3 Procedure and results for the first mock up

The beam path chosen for the first experiment on the first mock up (section 3.1) is
shown in figure 3.9. A dot represents a spot where the electron beam stays for 0.5 ms.
The path can be divided in three regions that contain the same patterns. Each of
these patterns was loaded with a certain number of cycles. The different patterns had
three purposes. First, to achieve different mean power densities, roughly 1 MWm™2
per spot (fig. 3.10). This results in different surface temperatures for the individual
tiles. Second, to investigate the effect of the Gaussian beam shape, e.g. the necessary
distance between single spots to not influence each other. Third, to test the accuracy
of the beam guidance of JUDITH 2.
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Figure 3.9: Beam path on the first mock up: Each dot represents a
spot where the beam stays for 0.5 ms, simulating an ELM-like heat load. The
different spot numbers result in different surface temperatures. The top and
bottom part of the pattern load the beam dumps. The centre part covers one
third of the mock up (six tiles).

The power density Lg in the beam centre is defined by machine power and beam
diameter (eq. 3.1). The beam diameter data found in [1] were used here. In order to
get a high power density, the most favourable ratio of power and beam diameter was
found to be at a power of 44 kW (5.9 mm FWHM value, lens currents and pressure
optimised), resulting in Ly = 1.1 GWm™2. At these parameters the beam did not
only have the highest power density of all measured parameter sets in the region of
SL-mode (the faster of the two operational modes of JUDITH 2), but its diameter
and therefore the power density was also relatively constant over a broad vacuum
pressure range [1]. Taking into account the reflection coefficient for tungsten (Rw =
0.45), only 0.61 GWm~2 were absorbed. This means 0.3 MJm~2 absorbed energy
density per spot for 0.5 ms dwell time. In order to increase the energy density the
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Figure 3.10: Power density distribution on tiles 1 and 3: The maximum
value of 1.1 GW/m? is not reached because tungsten reflects about 45% of the
electron energy.

pulse duration had to be increased. For a dwell time of 0.7 ms 0.43 MJm~2 were
reached.

The aforementioned first mock up (called FT141-1, fig. 3.1) was loaded with the
described pattern (fig. 3.9), that was divided into three sections. These were not
loaded at the same time, but successively, applying 103, 10* and 10° pulses with a
frequency of 25 Hz, a peak power density of Ly = 0.61 GWm™2 and a dwell time of
0.5 ms (0.3 MJm~2, fig. 3.9). The tiles showed no visible change (fig. 3.11a), even
after 10° shots. Therefore the dwell time was increased to 0.7 ms in the second pass
and again one third of the sample was exposed to the beam. The tungsten surface
then showed severe cracks after 4000 cycles (fig. 3.11b). The cracks did not span
the whole sample, not even for the closest arrangement of spots (fig. 3.10a). This
might be attributed to the shift and extension of the real spot pattern compared
to the desired one. As can be observed in figure 3.11b the beam guidance had to
be optimised. The guidance was tested immediately before starting an experiment
by usage of a steel plate that was mounted above the sample. The electron beam
was switched on for a short time (= 1 second), leaving traces of molten steel as in
figure 3.12 (aiming procedure).

From the extension of the crack network a first approximation of the energy
density threshold for the onset of cracking could be made. The cracks extended
to a radius of 1.9 mm (minimum value in x-direction), which is related to a power
density of 0.46 GWm~2 or an energy density of 0.32 MJm™2. As this was the same
value as the peak value of the first experiment (within experimental error margins)
it may indicate a worse beam focussing in the first experiment.

To check whether the absence of any damage after the first pass might have been
attributed to bad beam focussing, the first experiment was repeated with special
attention to the beam parameters. Although the vacuum quality was not as good
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Figure 3.11: Light microscope image of the tile loaded according to fig-
ure 3.10a: a) after loading with 10* pulses of 0.5 ms (0.3 MJm™2); b) after
loading with additional 4000 pulses of 0.7 ms dwell time (0.43 MJm~=2). The
dots indicate the electron beam centre, the circle the area within FWHM.

Figure 3.12: Steel plate to test the beam guidance. The molten spots
indicate the beam centre position, the given pattern is shown on the right.
Some “copies” of the clear spots are visible (e.g. in the upper right corner at
the diagonal three—spot pattern). These occur because the machine needs a few
tenth of a second to achieve full power and a stable operational state. During
this time the beam deflection is still incorrect.

as desired, probably leading to a still not perfect focussing, the material showed
cracks after 1000 cycles (fig. 3.13) on a yet undamaged part of the mock up. A
minimum power density of 0.44 GWm ™2 (— 0.22 MJm™?) can be derived from the
vacuum quality of pa, ~ 3+ 107* mbar. These results already showed: The beam
was not well focussed in the first experiment because the chamber pressure was
too high. The light microscope images also indicated that cracking just began.
The cracks were much thinner than in the second experiment (however, one should
keep in mind that the cycle numbers differ). It was decided to change the loading
pattern and to prevent big distances between subsequent spots in order to improve
guidance precision. A second motivation was to achieve a bigger homogeneously
loaded evaluable area. It was also concluded that special attention had to be paid
to the chamber vacuum pressure.
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Figure 3.13: Light microscope image of the tile loaded according to fig-
ure 3.10b (small copy shown on the left) after 1000 cycles of 0.5 ms with im-
proved beam focussing. The image in the middle is composed of two separate
shots.

3.4 Circular beam loading method

The second generation mock up was used to test the new circular beam loading
method and to get first results for the resistance of tungsten against high cycle
transients. The new beam path used a dwell time of 5 ps per spot. This way a path
can be designed with maximum flexibility. If the beam should stay on a spot for a
longer time the position command can just be repeated. Because of the problems
with the first experiments the path was designed to avoid any bigger gaps between
subsequent spots. It applied ELM-like loads in a circular manner (fig. 3.14). Because
of the great flexibility of the electron beam guidance system another possibility was
considered: The interpulse time between subsequent loads of nearly 40 ms (at 25 Hz
pulse repetition rate) can be used to apply a steady state heat load. This technique
would allow to combine both types of loads (fig. 3.15) and create ITER relevant
thermal loading conditions. However, first some considerations about the circular
loading method were necessary.

The circular beam loading method was initially developed to increase the homo-
geneously loaded and evaluable area on the sample. As described in section 3.2 a
beam path for an experiment consists of one or more spots. Loading test specimens
with the Gaussian shaped electron beam in a single spot-like manner results in a
small evaluable area around the spot centre, where loading is quasi-homogeneous.
The radius 1, (distance from centre) at which the power density decreases to a
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Figure 3.14: Circular beam loading method: The beam is guided around
the loading centre in a circular path (top). This circle is repeated until the
desired pulse duration is achieved (e.g. ~ 0.5 ms). The resulting power density
development in the centre and close to the circle fringe (but still inside) are
shown below. The small power density fluctuations of =~ 10% are accepted
and the circle area is regarded as homogeneously loaded with the centre power
density.

fraction p of the peak value is determined by

o FWHM | In(1-—p)
P2 In(2)

(3.3)

This means the evaluable area for a spot with a beam FWHM = 8 mm and an
acceptable power density difference of 15 % compared to the beam centre (p = 0.15)
is r, = 1.9 mm. Choosing a stricter limit results in an even smaller evaluable area.
To increase this area the beam is guided in a circle, consisting of eight spots loaded
with the minimum dwell time of 5 ps each. Hence the beam rotates around the
loading centre at a fixed distance. An example of such a beam path is shown in
figure 3.15. The combined heat loads on the centre tile of the depicted specimen
simulate ITER relevant conditions of ELMs and ~ 5 MW /m? (absorbed) steady
state heat load. Within the duration of an ELM-like loading of 0.48 ms the beam
circulates 12 times. The power density of the beam has to be increased to achieve
the same power density in the centre of the circle as in the centre of a spot-like
loading. A comparison of the resulting energy densities for spot-like loading and
circular beam path loading is shown in figure 3.16. The results of the experiments
with the second generation mock ups (fig. 3.15 & 3.17) using relatively wide circle
radii (3.8 mm at FWHM = 6.55 mm, fig. 3.15 & 3.26) showed that the beam follows
the circular path precisely, but the radius of the circle has to be small compared
to the beam FWHM:; otherwise the difference in power densities of circle centre
and beam centre produces an inhomogeneous loading. This became obvious due
to an inhomogeneous surface roughening, clearly following the circular beam path
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Figure 3.15: Top view of the beam path for a combined ELM + steady
state heat load experiment on the second generation mock up (background).
Every dot represents a spot where the beam stayed for 5 ps. The path shows
three differently loaded areas (from left to right): ELM-like only, ELM-like +
steady state, steady state only. During interpulse time the beam moved between
the two beam dumps and applied steady state load.
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Figure 3.16: Comparison of energy densities for spot-like loading (power
40 kW) and circular beam path loading with a radius of 2 mm (power 47.6 kW)
and 3.8 mm (power 74.7 kW). A FWHM of 8 mm and a pulse length of 0.48 ms
are valid for all three curves.

(fig. 3.17). The roughening was more pronounced in case of additional SSHL (higher
surface temperature). The calculated difference in power densities of beam centre
and circle centre is depicted in figure 3.18, normalised to the beam centre power
density, for three FWHM values as a function of circle radius. In order to estimate
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Figure 3.17: The sample tiles of the experiment shown in figure 3.15
after loading. Experimental parameters: absorbed power density in the beam
centre 0.49 GW/m?, absorbed power density in the circle centre 0.2 GW/m?
(radius 3.8 mm), pulse duration 0.8 ms (pulse duration was increased to achieve
a higher energy density), ELM frequency 25 Hz, number of ELMs 10000. Beam
(0, 0) coordinate is in the centre of the middle tile. Comparing the left and
centre pictures shows that beam guidance is best if the pattern is close to the
(0, 0) position.
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Figure 3.18: Difference in power densities between circle centre and beam
centre, normalised to the beam centre power density, for three FWHM values
as a function of circle radius.

an acceptable radius and also to show that the 5 ps spots of the circular pattern
do not cause degradation effects on their own it is quite useful to use the heat flux
factor (Fup):

Far =LVt (34)

L is the local power density and t the period this power density loads a surface.
The heat flux factor is proportional to the surface temperature increase caused by
the heat flux [59,60]. Thus it is directly connected to the stresses induced by the
temperature gradients that occur during THLs. Fyy is suitable for comparing loads
with different power density and pulse duration parameters, as long as the time scale
is similar (e.g. comparison of 0.5 ms tests and 1 ms tests or 5 ms disruption simula-
tions in JUDITH 1 and 2). A comparison of Fyp of a spot-like loading or a complete
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circular load (FWHM = 8 mm, L = 1 GWm™2, t = 0.48 ms) of 21.9 MWm~2,/5
and Fpp of a single shot in a circular pattern of radius 2 mm (FWHM = 8 mm,
L=12GWm2 t=5npus) of 27 MWm~2,/s shows a difference of one order of
magnitude, ensuring a 5 ps pulse has no impact on its own. This can also be seen
experimentally: the steady state heat loading path in figure 3.15 consists of 5 ns
spots that produce an average steady state heat load of 4.4 MW/m? (absorbed)
during the experiment. The sample tile does not show any surface modification
(roughening, swelling or cracking) in that area (fig. 3.17). It was verified by light
microscopy, SEM and laser profilometry that no detectable changes occurred com-
pared to the sample surface before loading.

A radius of 2 mm at a beam FWHM of 8 mm would increase the evaluable
area by ~ 400%, using an acceptable power density difference of p = 0.15. But
as the experiments showed it is also necessary to consider the energy density when
defining the evaluable area. A comparison of energy densities (fig. 3.16) shows:
the broadening of the energy density distribution is small for such a small radius.
Defining the evaluable area by a certain absorbed energy density leaves an increase
in evaluable area of only ~ 10-20 %.
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Figure 3.19: Power density change for a beam with FWHM = 6 + 1 mm
relative to a beam with an exact FWHM of 6 mm for spot-like loading and for
the centre of a circular beam path. It is clearly visible that the circular beam
path has the advantage of an increased stability against variations in FWHM.

However, the circular beam path shows another beneficial effect: It provides a
better stability against changes in beam FWHM caused by e. g. vacuum quality
variations. As an example figure 3.19 shows the power density change for a beam
with FWHM = 6 + 1 mm relative to a beam with an exact FWHM of 6 mm, both
for spot-like loading and for the centre of a circular beam path.

Summarising the obtained results and theoretical considerations four conclusions
can be drawn: First, the circle radius has to be small compared to the beam FWHM
that itself has to be small to achieve the necessary power densities. Despite the
marginal increase of evaluable loaded surface area, circular beam loading is a useful
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method, as it additionally shows an improved stability against changes in beam
FWHM. Second, the experiences during testing and the results showed that the
electron beam achieved the best precision if the desired pattern was close to the
origin of ordinates. Third, the application of additional SSHL did not pose any
problems and led to significantly different material response. Fourth, the material
showed roughening, a degradation which is notable but less severe than cracking.
Hence the used load was already in a region of interest. The circle centre was loaded
with 10* pulses of 0.8 ms duration and 0.2 GWm™2 power density. This corresponds
to Fgr = 5.7 MWm™2,/s. Although the chosen circle radius was too wide, this
number served as first estimate for the planning of following experiments. In order
to find a damage threshold, the intensity had to be decreased below this heat flux
factor.

3.5 Improved beam profile measurements

The results of the first tests and the theoretical calculations regarding the new cir-
cular loading method showed the need for more precise beam profile measurements,
in particular to characterise the influence of vacuum pressure on beam diameter. A
series of tests was started with a new beam profile measurement technique!.

3.5.1 Experimental setup

Three tungsten wires/rods were mounted on a supporting structure from which they
were electrically isolated by small ceramic cylinders (fig. 3.20). The wires have to be
parallel and the distance d between them has to be known. Each of the wires was
connected to a cable that conducts the electric current absorbed by the wire. This
current was indirectly measured with an oscilloscope by the voltage drop across a
resistor.

Tungsten was chosen as wire material for its high melting point, high thermal
conductivity and low electron absorption, minimising the risk of a local overheating.
The high electron reflection (Ryw ~ 0.45) leads to a lower absorbed heat load while
not changing the signal shape (only the intensity).

The earthed support structure was made of copper to avoid electrostatic charge
effects and to quickly conduct away any heat. It was placed in the test chamber
of JUDITH 2 together with two beam dumps, water cooled copper blocks that are
used to absorb the major part of the incoming power.

!This method was developed by Dr. Axel Schmidt and Andreas Biirger and is being patented
under filing no. 102010025123.2, filing date: 25.06.2010
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Figure 3.20: Experimental setup for the beam profile measurements. The
support structure is made of copper, the wires of tungsten and small (white)
ceramic cylinders isolate them from each other. The current through each wire
was measured with a resistor and an oscilloscope, shown exemplarily on the
right for the first wire.

3.5.2 Experimental procedure

The electron beam was guided back and forth between the two beam dumps passing
the three wires (fig. 3.20, 3.21). The oscilloscope signal is observed and recorded. It
depicts the electron current versus time. To get a spatial distribution of the passing
electron beam (current) the two outer wires are used: With the knowledge of the
distance d between the wires and their respective signal differences a beam velocity
can be calculated, allowing converting the time information to distances.

As many parameters influence the beam shape and machine time is limited a
few chosen sets of parameters were studied up to now. The z-height in the chamber
was always kept constant at the working height of standard test specimens in the
chamber [54]. At least ten measurements were recorded for every set of parameters.
Each measurement was evaluated by fitting Gaussian functions to the data and
calculating the conversion factor (beam velocity). A Gaussian function was chosen
because of several reasons. First, it describes the beam shape well and was already
successfully used in former measurements. Second, it provides a single parameter
defining the beam diameter: the Full Width at Half Maximum (FWHM) assuming
the beam is approximately symmetric which was shown in [1]. Third, the described
setup always absorbs all electrons along the wire, meaning it integrates over one
dimension. For a Gauss function fit this does not change the result for the FWHM.
The FWHM is used to quantify the beam diameter. An exemplary measurement
and fit are depicted in fig. 3.22.

For all measurements the main chamber pressure was controlled manually by a
needle valve as the automatic pressure control was not yet installed at that time.

The setup was tested with different wire diameters as it is desirable to use a
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Figure 3.21: Experimental procedure for the beam profile measurements
(top view of fig. 3.20). The beam mainly circulates on the beam dumps which
absorb and dissipate the heat. From time to time the beam is led across the
wires to the other beam dump. This gives a measurable signal through the wires
which can be seen on the oscilloscope screen. It is recorded for later analysis.

small wire thickness for a better resolution while this approach might lead to local
overheating. Different beam velocities were also tested.

3.5.3 Results

The tests with different wire thicknesses showed no problems due to overheating
in any case for machine power up to 100 kW, even at the lowest beam velocities
(higher powers have not been tested yet). Nevertheless thin wires were difficult to
handle and did not keep in place/shape due to bending and sagging. A significant
improvement in resolution could not be observed for the thinnest wires anyhow.
The beam shape could directly be observed on the oscilloscope screen (fig. 3.22). It
was also recorded and analysed as described providing a mean FWHM value and a
standard deviation for each set of parameters (fig. 3.23).

Several measurements showed that focussing improved with decreasing cham-
ber pressure (fig. 3.23). In [1] it was shown that further decreasing the pressure
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Figure 3.22: (a) Beam profile measurement at P = 38 kW machine
power, U, = 50 kV acceleration voltage, main chamber pressure pchamber =
3.5-107% mbar, magnetic lens currents I(L;) = 100 %, I(Ly) = 40 %. The outer
wires 1 and 3 are thicker than the centre wire and therefore produce a signal of
higher amplitude. (b) shows the centre wire signal only with a Gauss fit. The
FWHM for this (single) measurement is 5.43 £ 0.11 mm.

led to a defocussing again, meaning an optimum pressure range exists. However,
this could not be verified up to now as lower main chamber vacuum pressure than
1.3-10~* mbar could not be achieved during these calibration campaign. The active
cooling might have been a reason for this, as experience shows that an increasing
number of pressurized flanges leads to decreasing vacuum quality. An increased
dependency of the beam FWHM on the focussing lens current (stronger slope, pro-
nounced minimum) as well as a shift of the minimum diameter towards higher lens 2
currents could be observed for decreasing pressure (fig. 3.23). The obtained diameter
can be used to calculate the power density (Lg) in the centre of the Gaussian beam
using equation 3.2 and the machine power P. The FWHM and ¢ are proportional:

FWHM = 20/21n(2) (3.5)

The maximum incident power density achieved was 2.8 GW/m? (at 43 kW, 50 kV,
1.3-107% mbar, I(L;) = 100 %, I(Ly) = 38 %).

The new measurement method for high power electron beams proved to work
very well. In contrast to former methods it directly showed a beam shape on the
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Figure 3.23: Dependency of beam FWHM on lens 2 current (I(L,))
and chamber pressure at 38 kW machine power, 50 kV acceleration voltage,
I(L;) = 100 %. Every data point is an average of at least ten measurements.
The error bars show the standard deviation, the lines are fitted polynomials
(2. degree).

oscilloscope screen during the measurement, enabling to change parameters and
focus the beam while observing it. It was also the fastest method used so far and
works for a machine power of at least up to 100 kW. The tests indicated that it will
work for higher power too, as even the thinnest tungsten wires showed no problems.
In case of overheating the beam velocity can be increased.

The complete results are listed in appendix C.

3.6 Final test procedure

The final procedure that was used for all the experiments consisted of several steps.
In all calculations the absorption of the respective material has to be considered.

1. A desired transient intensity and SSHL had to be chosen.

2. A tolerable circle radius rq, had to be calculated: Small enough that the
power density in the beam centre Lg is at most 10 % higher than the power
density in the circle centre Ly, (acceptable power density difference p = 0.1).

3. A machine parameter set at which the beam power density fits the needs had
to be found. The parameter sets used are listed in table 3.1.

4. An appropriate beam path had to be designed. It had to fulfil several require-
ments:

e The distance between subsequent coordinates should be some millimetres
at most.
o The pattern had to be repetitive: experiments were carried out at 25 Hz
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3.6 FINAL TEST PROCEDURE

this meant a 40 ms pattern. At 5 ps dwell time per spot 8000 coordinates
were necessary. The maximum number of coordinate points per file al-
lowed by the guidance software is 2600 [55]. Hence the pattern consisted
of at least two files, one for the transient load (the circle) and one for
the interpulse time (beam dump and/or SSHL). The latter had to be re-
peatable. It usually consisted of roughly 200—400 coordinates which were
repeated 20-40 times.

o Start and end points must be close, because the pattern is repeated (see
first requirement).

o The transient load pattern (circle) was located around the origin of co-
ordinates (best beam guidance accuracy).

e During interpulse time the beam had to be guided to the beam dumps
to dissipate the heat (fig. 3.24).

e Heat load distribution on the beam dumps should be homogeneous and
the load must not exceed 5 MWm™2 [61] to prevent damage.

o If a SSHL was required, the interpulse pattern got more complicated: The
sample and the beam dumps had to be heated in turns with a frequency
of roughly a millisecond in a meander-like pattern. The pattern had
to span the sample tile area and even exceeded it in order to achieve a
homogeneous load. Hence it depended on the beam diameter, because
the beam diameter, its position on the tile and the tile size determine the
losses (fig. 3.5). This meant a SSHL pattern had to be designed uniquely
for each transient power density.

e The pattern had to be designed differently depending on the position of
the tile (right, left, centre) to use the correct beam dump area. Heat load
on the clamps had to be avoided as they overheated easily. However, a
pattern for the right tile could be mirrored to obtain a pattern for the
left tile. The mirror axis is a vertical line through the circle centre (not
through the pattern centre) because the whole mounting table with the
beam dumps is moved to place the circle centre at the origin of ordinates
of the beam (fig. 3.25).

5. After mounting a sample in the JUDITH 2 machine an aiming procedure was
necessary in order to hit the desired tile. This was either done by a steel plate
that was placed on top of the sample (fig. 3.26) and removed after aiming or
by a fourth steel tile (fig. 3.27). Aiming using a steel tile had two advantages:
It was not necessary to open the machine after the aiming procedure to remove
the steel plate. The aiming was also more precise because it is done on the
same z-height as the tiles. In any case the beam was switched on for a second
and the position of the transient load was observed as glowing spot via a video
camera. Melt droplets on the steel revealed the impact position and allowed
to precisely adjust the pattern with the beam guidance software. The sample
was already installed in the approximate central position, hence only small
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3 TEST PROCEDURE DEVELOPMENT

|

Beamdumps

Figure 3.24: Top view of mock up mounted in JUDITH 2. The mock
up (fig. 3.4) is swrrounded by four beam dumps, actively cooled copper blocks,
which are fixed by four clamps (partially visible in the corners of the picture). A
simple beam path that applies THLs (circle) only on the centre tile is shown in
red. Most spots of the path are located on the beam dump for heat dissipation,
because the beam is not needed on the sample during 39.5 ms out of 40 ms.

Figure 3.25: Top view of mock up mounted in JUDITH 2. An example
of a beam path (red) that applies a combined transient and SSHL. The path on
the left picture cannot be used for the centre or right tile as it would load the
clamps. It can, however, be mirrored vertically and then be used for the right
tile (mirror axis in the centre of the transient load circle) as it is shown on the
right picture. The mounting table is moved to keep the origin of ordinates of
the beam in the circle centre (white cross).

corrections were necessary. All machine parameters like power, acceleration
voltage etc. and the pattern for the test always had to be used for aiming,
otherwise the beam position can change. All cooling systems had to be in full
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3.6 FINAL TEST PROCEDURE

operation as well, because the high water pressure can move the whole setup
when switching it on.

. The pyrometer position had to be checked after aiming. However, due to
geometric reasons (like small target area and beam dumps blocking the line of
sight) it was very difficult to place the pyrometer correctly.

Figure 3.26: Surface of a steel plate used for aiming. The lines show
the position of the tiles located below the plate. Melt traces of the first, second
and third shot are clearly visible (numbers). After the last shot the plate was
removed and the actual experiment was started. The plate was used in a test of
the second mock up design (fig. 3.15) with re. = 3.8 mm. Although it became
apparent that this radius is too large, the circles proved the working principle
of the circular loading pattern (section 3.4).

Figure 3.27: Mock up (final design) with fourth position for a steel
aiming tile (leftmost). The lower right corner shows a steel tile after usage.

7. The beam dumps were used during experiments and had to be baked out (done

with the beam dump pattern written for the test) before aiming, in order to
get rid of water and dirt that clearly deteriorated the vacuum quality at first.
This procedure only needed some minutes until vacuum pressure was stable.
. The first tile was tested. Each tile usually has an individual pattern, because
of different test conditions.

. After testing the first tile the mounting table was moved to place the next tile
at the central position. The next beam pattern was loaded and in most cases
aiming had to be repeated for small corrections.
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3 TEST PROCEDURE DEVELOPMENT

10. After all tests were finished the sample was demounted. At the same time

attention was paid to the temperatures inside the chamber. The actively
cooled parts (like the sample itself) were cooled to the coolant temperature
within seconds, but some other parts, like the mirror for the infra-red camera
could be destroyed by oxidation when ventilating the chamber too early.

Table 3.1: Parameter sets used for the tests after development of the final
procedure. Due to different electron absorption coefficients different sets had
to be found for each material. Lens 1 and 2 currents are given in % of the
maximum current allowed (like in the software of the machine). The main
chamber pressure was always Pepamber = 3.5 - 1074 mbar.

Fur Labs Tere Power Voltage I(L1) I(L2) FWHM
(MWm~*s) (GWm™) (mm) (W) (V) (%) (%) (mm)
W (Rw = 0.45)
3 0.14 2 43 40 100 40 11.88
6 0.27 1.5 43 40 100 34 8.36
7.5 0.34 1.44 43 40 100 30 7.41
9 0.41 1.2 40 50 100 42 6.61
12 0.55 1.05 40 50 100 39 5.67
CFC (Re = 0.03)
9 0.41 1.6 43 40 100 35 9.05
12 0.55 1.3 43 40 100 33 7.88
15 0.68 1.2 40 50 100 42 6.61
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4 Experimental conditions and test
matrix

4.1 Tested PFMs

4.1.1 Tungsten

The test components consisted of tungsten tiles of 12 x 12 x 5 mm?® brazed to
an actively cooled copper block (section 3.1). The tungsten tiles were cut from a
disc shaped block of pure (99.97 wt%) tungsten provided by Plansee AG, Austria
(fig. 4.1). Tt was produced by cold isostatic pressing of homogenised powder, sub-

—Jp forging direction
—J» heat loading direction

Figure 4.1: Pure double forged tungsten disc as provided by Plansee AG,

Austria. Forging steps, cutting scheme and grain orientation of tiles are shown.
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4 EXPERIMENTAL CONDITIONS AND TEST MATRIX

sequent sintering at 2000 — 2500 °C and forging into a rod. A second forging step
in axial direction ensued, with intent to create an isotropic material. At last the
disk was annealed at 1000 °C for stress relieving. Despite the intention to create
an isotropic material, microstructural investigations showed that the grains of the
material were disc shaped (following the shape of the block) with an aspect ratio of
~ 0.4 [62]. The grains were oriented parallel to the loaded surface, which was always
polished to mirror finish (with diamond suspension of 1 pm; done before brazing to
the cooling structure) to assure well-defined starting conditions. Profilometry scans
on polished surfaces showed a mean roughness of about R, ~ 0.1 pm (before and
after brazing). Typically deviations from zero line were <1 pm. These irregularities
were related to the texture: grains of different crystallographic orientations have dif-
ferent mechanical properties in surface plane direction, hence some grains are more
prone to material removal by polishing with the diamond suspension than others.
This leads to hills and valleys which are visible in light microscope images (fig. 4.2).

z [pm]
Fob & B RS o B0 b

Figure 4.2: Light microscope image of polished tungsten and corre-
sponding profilometry result as it appears before testing. A special lighting
shows the roughness that remained after polishing. This texture occurs due
to the different mechanical properties of differently oriented grains. Surface
average roughness is typically R, = 0.05 — 0.12 pm. Maximum valley/peak
depth/height is typically 0.5 — 1 pm.

4.1.2 CFC

The test components consisted of NB31 and NB41 CFC tiles of 12 x 12 x 5 mm?
brazed to an actively cooled copper block (section 3.1). Both CFC types are made
of carbon fibre bundles aligned in orthogonal directions as shown in figure 4.3. The
pitch fibres, aligned perpendicular to the surface, have the highest thermal conduc-
tivity in fibre direction. The PAN (polyacrylonitrile) fibres are aligned parallel to
the surface. These fibre bundles are used to achieve high tensile strength. The
bundles in z-direction are produced by using a hook-like tool to pull out fibres from
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4.2 EXPERIMENTAL CONDITIONS

the PAN bundles, perpendicular to PAN and pitch direction. This process is called
needling. The whole production process of carbon composites is described in detail
in [63], investigations of material properties and thermal shock behaviour in [64-67].
The tiles used for the experiments were polished like the tungsten tiles, but due to
the porous nature of CFC the surface is never as plain as the tungsten surfaces.

Heat flux

Figure 4.3: CFC NB31 material block and its different fibre bundles:
pitch fibres in x-direction, PAN fibres in y-direction and needled PAN fibres in
z-direction (yellow).

4.2 Experimental conditions

For the experiments the components were mounted in JUDITH 2 and connected
to the cooling circuit. Water was used as coolant with a temperature of 100°C
(meaning this was also the starting component temperature for all tests). At this
temperature the heat transfer coefficient is high and hence a better cooling efficiency
is achieved compared to cold water cooling. Water pressure was 3 MPa (30 bar)
with a flow rate of 100 1/min. Pressure and temperature were close to the ITER
cooling system parameters [32].

A pulse frequency of 25 Hz and a pulse duration of 0.48 ms were kept constant for
all experiments. The electron absorption coefficient used to calculate the absorbed
power density was assumed to be 0.55 for tungsten and 0.97 for carbon and was
obtained by Monte-Carlo simulation for pure tungsten/carbon [49]. The circular
beam loading method with the aforementioned radii (section 3.4, table 3.1) was
always used.
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4 EXPERIMENTAL CONDITIONS AND TEST MATRIX

All tests performed are shown in table 4.1. In general, surface temperatures
depend on SSHL (0 — 10 MWm~2), PFM, component geometry, cooling, and beam
width to tile size ratio. The values given in table 4.1 are nominal values which
represent the true temperature. The real surface temperatures can deviate by a few
ten degrees and were obtained by finite element simulations (sections 2.4, 4.3 and
5.1) and, if above 350°C, verified by pyrometer measurements (section 2.2 & 5.1).
These temperatures were reached a few seconds after the start of an experiment
(situation of equilibrium with the cooling, fig. 5.5).

Experiments were interrupted after every 10,000 pulses (= 400 s) for 10 s, re-
sembling an ITER discharge. The component cooled down to starting temperature
(100°C) during this time.
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4 EXPERIMENTAL CONDITIONS AND TEST MATRIX

4.3 Temperature simulations

As the sample geometry was changing during development of the test procedure, a
script file with a parametrised geometry was written. A set of parameters like tile
dimensions, cooling tube radius or tile distance has to be provided, everything else
is calculated automatically. As the electron beam of JUDITH 2 can be focussed on
different spots via x— and y—coordinates, the script was designed to accept coordinate
files (in millimetres, not in machine coordinates, but the Beambam software provides
a conversion based on the linear dependence given in [1]) and apply the loads. The
Gaussian shape of the beam (section 3.2) is used when applying heat loads, so the
beam diameter (o) and centre power density (Lo, equation 3.1 in section 3.2) has to
be given. Material properties were taken from the ITER materials database [68] for
tungsten and from [66] and [69] for CFC NB31 and NB41 respectively. The data
set available for NB31 contained separate data for PAN and pitch fibres, hence the
individual fibre bundles could be simulated (with perfect thermal contact between
them).

Temperature dependent heat transfer coefficients for the active cooling were cal-
culated with the EUPITER code [70] for the given experimental conditions (previous
section). The heat transfer coefficient increases with increasing coolant temperature,
at least up to 320°C. However, as the cooling is very efficient, temperatures that
high are not achieved, hence simulation results showed differences of only < 1°C
when using a fixed (100 °C, temperature independent) heat transfer coefficient.

In all simulations radiative cooling was omitted (to save calculation time) because
it does not contribute significantly to the heat balance for the given situation. The
highest temperatures, achieved during a THL, were about Tyt &~ 1400 °C. Using
the Stefan-Boltzmann law

j* = eosgT* (4.1)

an emissive power density of j* ~ 0.44 MWm™2 can be estimated (ogg = 5.6704
1078 Wm ?K™*), assuming a “worst case” emissivity of ¢ = 1 and neglecting the
emission of the surrounding machine (which is cooled to room temperature). This is
three orders of magnitude smaller than the heating power density. During interpulse
time the surface temperature reaches Ty =~ 700 °C at most and hence radiates with
4% = 0.05 MWm ™2, which is 1/200%" of the SSHL power density (or less for e <1).

Perfect heat conduction through the brazing interface was also an assumption
in all simulations. The brazing of tungsten and copper with a silver based solder
showed excellent wetting and only rarely cavities (fig. 3.3). Additionally silver has
an extremely high thermal conductivity, compensating small defects in the brazing
layer [58]. However, the assumption of a negligible influence of the joint is only valid
for thermal calculations as performed here, not for mechanical.

First simulations were done with the full implementation of every 5 ps spot of the
circular beam loading. One THL consists of 96 steps (8 spots, repeated 12 times),
plus the interpulse time until the next pulse. This procedure was changed, because
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4.3 TEMPERATURE SIMULATIONS

it was too time consuming, by replacing the energy intake of the 96 (Gaussian) 5 ps
pulses with a single Gaussian. This “virtual” Gaussian beam is formed when adding
the intake of all single spots:

. 2 . 2
. nNsp (x+rcirc-cos(i-ﬁgg)) +(y+rcirc-sin(i~ﬁgg))
¢ _
Hvirt = Labs : Nrep : AtSP ’ Z € 20
i=1
2,2
Teire <O _x"ty
S AL e 0 (4.2)

A circle with a radius of 14, consisted of ng, = 8 spots which were repeated Ny, = 12
times. Actually the sum does not result in a Gaussian, as can easily be seen when
increasing the distance rg;. of the individual Gauss functions, but for distances
Ieire<0 it is approximated well by a Gaussian. The “virtual” Gaussian has the
width ¢* of Hy; and the centre power density LS, (table 3.1). This replacement
technique allowed to perform simulations of the first four seconds of an experiment
in a reasonable time. After this time the dynamic equilibrium between heating and
cooling was reached.
The complete simulation script is found in appendix A.
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5 Results and discussion

5.1 Temperature measurements and simulation re-

sults

Successful surface temperature measurements with the fast pyrometer for experi-

ments with 10 MWm~2 SSHL and 5 MWm~2 SSHL are shown in figures 5.1 and

5.2 respectively. An emissivity value of eyy = 0.2 was used for all measurements on

tungsten. This value was chosen using the base surface temperature provided by

the two colour pyrometer as calibration point.
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Figure 5.1: Temperature measurement with the fast single colour pyrom-
eter on tungsten (ew = 0.2). The experiment applied THLs of 0.55 GWm™2
and a SSHL of 10 MWm™2. This led to a base temperature of ~ 700°C. The
impact of the ELM-like pulses (every 40 ms) is clearly visible, as well as the
64 small spikes (per cycle) caused by the electron beam sweeping that provides
the SSHL.
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5 RESULTS AND DISCUSSION

The results clearly showed that the loading patterns were applied correctly by
the machine. Two main features of the temperature graph were visible: first, a tem-
perature leap of several hundred degrees Celsius (dT/dt ~ 105 Ks™!) caused by the
induced THL. One should note that the peak temperature value is inaccurate, be-
cause of emissivity changes during temperature rise, and, more important, because
an exact overlap of loaded area and pyrometer spot could not be guaranteed. How-
ever, the purpose of the measurement was to check the temperature development
and to compare the base temperature with the simulation predictions.
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Figure 5.2: Temperature measurement with the fast single colour pyrom-
eter on tungsten (ew = 0.2). The experiment applied THLs of 0.41 GWm™2
and a SSHL of 5 MWm™2. This led to a base temperature of ~ 400 °C. The
impact of the ELM-like pulses (every 40 ms) is clearly visible, as well as the
32 small spikes (per cycle) caused by the electron beam sweeping that provides
the SSHL.

Second, the cool down phase (interpulse time), was superimposed by small peaks
that were caused by the electron beam sweeping. Sweeping provided the SSHL and
was applied by a complex beam guidance pattern (section 3.6). The number of
small spikes corresponds to the number of times the beam should switch between
the two beam dumps, loading the tile. Checking the distance of the THL leaps
showed the correct application of one ELM-like load every 40 ms (25 Hz). This is
of importance because the number of applied pulses is calculated by multiplying the
frequency with the duration of the experiment. The measurement shows that the
guidance software takes the time into account that the beam needs to travel from
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5.1 TEMPERATURE MEASUREMENTS AND SIMULATION RESULTS

one spot to the next. Otherwise the time between successive transient loads would
have been more than 40 ms (i.e. not taking into account a travelling time of only
0.5 1s between successive spots would lead to ~ 4 ms delay).

The surface temperature reaches ~ 700°C and = 400°C for the two cases of
10 and 5 MWm~2 respectively (fig. 5.1, fig. 5.2). The overall energy intake is also
influenced by the THL intensity. Especially if the beam is broad compared to the
tile width losses become important (fig. 3.5). Experiments with Fyp = 3 MWm~25%
(beam FWHM = 12 mm) have significant losses. The computed average load intake
of the 12 x 12 mm? tungsten tile surface by these transients was ~ 1.1 MWm™?2
while it was about 1.6 — 1.8 MWm™2 for experiments with higher Fyp value.
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Figure 5.3: Temperature measurement with the fast single colour pyrom-
eter showing the temperature rise during a THL (detail of fig. 5.2). The bumps
are a result of the circular loading while observing a spot next to the circle
centre (compare with loading, fig. 3.14).

A detail of figure 5.2 is shown in figure 5.3, magnifying the temperature leap
caused by the THL. The circular loading became apparent in this measurement as
every circling of the beam is visible as small bump (12 in total). The loaded area
and the pyrometer spot did not overlap perfectly and the temperature was measured
some fractions of a millimetre apart from the loading centre (otherwise the bumps
would not be visible).

Pyrometer measurements were also done during the tests on CFC. An emis-
sivity value of ecrc = 0.9 was used, again calibrated with the two colour pyrom-
eter. Although the SSHL was 10 MWm™2, the base temperature was only about
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5 RESULTS AND DISCUSSION

Tsur &~ 500°C due to the excellent thermal conductivity of CFC.

The measured temperatures correspond well to the predictions made by the
FEM simulations. Figure 5.5 shows the surface temperature development for a
component loaded with the most severe thermal loads (10 MWm ™2 SSHL and THL
of Fr = 12 MWm~25%5) on tungsten. An equilibrium temperature of Ty &~ 700 °C

750 -
700
650
£ 6004
9 ]
§ 550 -
: _
S 500-
li_) P
400
350 T T T T T T T T T 1
200 210 220 230 240 250

Time [ms]

Figure 5.4: Temperature measurement with the fast single colour pyrom-
eter on CFC NB31 (ecre = 0.9). The experiment applied THLs of 0.41 GWm™2
and a SSHL of 10 MWm™2. This led to a base temperature of ~ 500°C. The
impact of the ELM-like pulses (every 40 ms) is clearly visible, as well as the
small spikes caused by the electron beam sweeping that provides the SSHL.

and peak temperatures of Tpex &~ 1400°C were achieved after 4 seconds (= 100
pulses). The temperature at the joint between tungsten and copper was < 300 °C
and the gradient from surface to cooling tube inner wall was < 100°C/mm. The
temperature predictions for CFC did not correspond to the measurements as well as
for tungsten: A higher base temperature of Ty,¢ & 500 °C was expected (fig. 5.10).
The difference may be attributed to an actually lower emissivity (however, this
should not contribute more than a few percent) and to the fact that the pyrometer
gives an average value of pitch and PAN fibre temperatures. However, the volumetric
heating effect due to the high electron penetration depth has probably the strongest
impact (section 2.1). In the simulations a pure surface load is assumed.

Figures 5.7, 5.8 and 5.10 show the simulated base and peak surface temperatures
for all conditions. The base temperature is lowest for Fyr = 3 MWm~2s%? on tung-
sten, the case with the highest losses because of the large beam diameter. In order to
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5.1 TEMPERATURE MEASUREMENTS AND SIMULATION RESULTS

facilitate the description of results, nominal temperatures of Ty, &~ 200 °C, 400 °C
and 700°C are used for tungsten and Ty = 500 °C is used for CFC, representing
the different SSHL steps.
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Figure 5.5: Surface temperature at the centre of a tungsten tile
exposed to THL pulses of Fgp = 12 MWm™2s%® and an additional SSHL of
10 MWm~2. After 4 seconds an equilibrium with the cooling is achieved, re-
sulting in a base surface temperature of Tyt &= 700 °C and peak temperatures
of Tpeak = 1400 °C. Conditions apply as described in section 4.3.

Figure 5.6: Temperature distribution for a tungsten tile exposed to
THL pulses of Fyp = 12 MWm™2s%% and an additional SSHL of 10 MWm 2
after 4 seconds. The images show the moment immediately before (left) and
after (right) a THL pulse.
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Figure 5.7: Simulation results for the base surface temperature of
tungsten tiles exposed to different THL pulses (x-axis) and additional SSHLs.
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Figure 5.8: Simulation results for the peak surface temperature of
tungsten tiles exposed to different THL pulses (x-axis) and additional SSHLs.
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5.1 TEMPERATURE MEASUREMENTS AND SIMULATION RESULTS

Figure 5.9: Temperature distribution for a NB31 CFC tile exposed to
THL pulses of Fyp = 12 MWm™25%° and an additional SSHL of 10 MWm™2
after 4 seconds. The images show the moment immediately before (left) and
after (right) a THL pulse. The PAN fibres are hotter than the pitch fibres
because of their worse thermal conductivity (in depth, towards the cooling).
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Figure 5.10: Simulation results for the peak and base surface tem-
perature of NB31 CFC tiles exposed to different THL pulses (x-axis) and an
additional SSHL of 10 MWm™2. The axis scaling is the same as in figure 5.8.
The results for NB41 CFC are not shown because they differ only by 1 - 4 %
from the NB31 values.
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5.2 Tungsten

5.2.1 Overview

The double forged tungsten tiles were exposed to 10 — 106 THL pulses of Fyp =
3~ 12 MWm2s%? at surface temperatures of about 200 °C, 400 °C and 700 °C. The
names used for the samples are composed of two (no SSHL) or three (with SSHL)
parts: The first part refers to the heat flux factor in MWm™2s%% with which the
sample was loaded. It has two digits always. The last part carries the information
about the number of cycles in scientific notation. If a SSHL was used, it is noted in
the middle (in MWm~2), also always with two digits. A sample loaded with 250 000
pulses of Fp = 6 MWm 2% and a SSHL of 5 MWm ™2 would be named 06052.5E5.

06 05 2.5E5
~~ ~~ o

Fur SSHL _ number of pulses
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Figure 5.11: Surface condition of tungsten samples tested at a surface
temperature of & 200 °C (no SSHL). Undamaged samples are represented by a
green dot, roughened samples by a blue rectangle, samples with small uncon-
nected cracks by an orange triangle and samples with a crack network by a red
diamond. One sample showed recrystallisation at the surface near a crack (in-
dicated by “R”). Samples tested in JUDITH 1 are labelled accordingly, samples
indicated by an asterisk were added according to [62].

After exposure, samples were examined by light microscope, SEM and laser
profilometry as well as by metallographic investigation of the cross section of the
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Surface condition after testing pure W at T, =400 °C (5 MW/m2 SSHL)
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Figure 5.12: Surface condition of tungsten samples tested at a surface
temperature of a2 400°C (5 MWm~2 SSHL). One sample was cross sectioned
and showed recrystallisation, indicated by “R”. Samples tested in JUDITH 1
are labelled accordingly, samples indicated by an asterisk were added according
to [62].

Surface condition after testing pure W at T,¢ = 700 °C (10 MW/m? SSHL)
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Figure 5.13: Surface condition of tungsten samples tested at a surface
temperature of ~ 700 °C (10 MWm~2 SSHL). Samples that were cross sectioned
and showed recrystallisation are indicated by “R”. Samples tested in JUDITH 1
are labelled accordingly.
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5 RESULTS AND DISCUSSION

specimens. The damage was categorised according to the type of observed degrada-
tion. Overview graphs show the results of different experiments (fig. 5.11 — 5.13).
Roughened samples show a change in reflectivity visible at optical inspection and on
light microscope images (fig. 5.15). This change could be identified as roughening
by using laser profilometry. Cracks appear with increasing cycle number/power den-
sity (“small cracks”, fig. 5.22a) and connect to a “crack network” (fig. 5.22b). Small
cracks were only observed at elevated temperatures (Tgy,s ~ 400°C and 700 °C).
After further pulses also melting took place for the most severely loaded samples
(fig. 5.22¢,d).

These categories are rather rough as only few samples showed similar damage.
Hence, in some cases the categories did not fit as well as in others. Sample 121E3
(1000 pulses of Fgp = 12 MWm 2%, Ty,; = 200°C, fig. 5.17) showed mainly
roughening, but one single multiply branched crack at the fringe of the loaded area.
It had to be classified as “cracked” although it is quite different from other cracked
samples. Some samples are therefore discussed in more detail, like 121E3.

A few selected samples were tested in the JUDITH 1 facility (low pulse number
tests). They are also shown in the overview diagrams as a supplement. Because
of the minimum pulse duration of 1 ms they can, however, not be compared using
the power or energy density, but the heat flux factor. Samples loaded in JUDITH 1
always showed a stronger degradation than samples loaded at similar conditions in
JUDITH 2. Hence the test with 100 pulses of Fgp = 9 MWm 252 at Tyu¢ = 200 °C
showed small cracks already, but the test at the same heat flux factor/temperature
with 1000 pulses in JUDITH 2 showed only roughening. This might be attributed
to the scanning mode in JUDITH 1 which is less homogeneous compared to the
JUDITH 2 transient simulation method (fig. 2.2, fig. 3.14).

In contrast to typical thermal shock tests performed at higher power densities
and lower pulse numbers the results showed a slow evolution of degradation. This
development suggested that cracks originate from thermal fatigue. A first directly
observable effect of this fatigue is roughening.

5.2.2 Roughening

Profilometry revealed that the surface generally developed a higher mean roughness
R. = 0.15 — 0.3 pum, also next to the area loaded with transients (and even without
SSHL). This was invisible to the naked eye, the samples were still mirroring. On
LM images the surface showed a more pronounced structure than already visible
before testing. This small scale waviness (wavelength ~ grain size) seems to be an
effect of the thermal expansion and contraction of the surface.

When looking at the samples after removing them from the machine, roughen-
ing of the area loaded with transients was immediately visible as dulled spot on the
otherwise mirroring tungsten surface. The investigation of this roughness revealed
a more pronounced roughening for higher base temperatures and pulse numbers
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5.2 TUNGSTEN

(higher mean roughness R,, fig. 5.14). It also appears earlier for higher tempera-
tures, i.e. at Fyp = 6 MWm™2s%® for 10* pulses there was no damage at Ty ~
200°C / 400°C, but roughening was observed at Ty, & 700°C. The overview of
all measured R, values (fig. 5.14) as well as the LM and SEM images showed that
the roughening process continued after crack formation, leading to highly deformed
surfaces (fig. 5.22d). Although increasing, the observed roughness seems to reach a
saturation for Tyt &~ 200 °C. However, the number of data points to confirm this is

too small.
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Figure 5.14: Overview of mean roughness values of the loaded areas.
All samples that showed at least roughened surfaces are shown. The area high-
lighted in grey denotes the range of R, values covered by unloaded (polished)
samples.

In the case of sample 061E5 the roughening was for the first time found to be
present on some tiny spots and did not cover the complete loaded area. This was
the first indication that the roughening process proceeded faster on certain areas.
The mean roughness increased from R, = 0.1 nm to R, = 0.14 pm, which is barely
significant, but the damage was also visible in the LM images when using a special
light incidence (fig. 5.15).

Samples tested after 061E5 showed: in early stages of degradation, roughening
was often found to occur at preferential locations. By laser profilometry rough-
ness with an amplitude of just a few hundred nanometres was identified for sample
121E3 (fig. 5.17). Later stages of roughening had amplitudes up to > 20 pm. The
observed localised roughened spots on some samples were analysed by using Electron
Backscatter Diffraction (EBSD) on the surface of the sample shown in figure 5.17.
Despite the roughening, the surface was flat enough to allow the usage of the EBSD
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Figure 5.15: LM top view image of the tungsten sample 061E5 after
loading. Just a few spots showed some roughening. This was the sample with
the slightest traces of surface modification (regarding the R, value) of all tested
samples.

FZJ-1EK 2011 EHT =20.00kV  Detector = SE1 WD = 24 mm

Figure 5.16: Surface SEM image of the tungsten sample 09051E4.
The sample showed the strongest roughening of all (only) roughened samples.
The mean roughness in the loaded area was R, = 1.67 pm compared to R, =
0.19 um for the unloaded area.

technique. Figure 5.19 shows three colour coded maps of the surface area. The
colours describe the orientation of lattice planes with respect to the surface normal
and to the other two spatial directions indicated on the SEM picture of the same area
(rolling and transverse). The roughened spots coincided with grains whose [001] di-
rection was parallel to the surface. This grain orientation has a lower yield strength
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Figure 5.17: Surface LM image and laser profilometry line scan of the
tungsten sample 121E3. The circle roughly indicates the loaded area. The
line corresponds to the profilometry scan at the bottom. A crack is visible, but
the sample is mainly roughened. The roughening is limited to certain spots.

in surface plane direction and, therefore, starts to deform first. The difference in
yield strength comparing the stronger [011] and the weaker [001] direction is about
a factor of two for a temperature range of 77 K — ~ 423 K (fig. 5.18). The weaker
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Figure 5.18: Initial yield stress of different crystallographic orienta-
tions of tungsten depending on temperature, according to [16].

grains are also more prone to material removal due to polishing, which explains
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why they lay deeper (texture in figure 5.17, also visible on unloaded surfaces before
experiments, fig. 4.2). A higher homogeneity in surface roughening was observed
at higher temperatures (fig. 5.16), either because of higher stresses or because of a
vanishing difference of yield strength of the crystallographic orientations at higher
temperatures.

rolling direction Phase: Tungsten

normal direction Phase: Tungsten

200 pm 200 pm
transverse direction Phase: Tungsten

[111]

[001] [101]

—_———
200 um
grain orientatio

200 um 7 200 um

Figure 5.19: EBSD investigation of the tungsten sample 121E3. The
roughened areas are coextensive with the grains whose [001] direction is parallel
to the surface. This crystallographic direction has a lower yield strength in
surface plane direction [16].
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5.2 TUNGSTEN

5.2.3 Cracking and melting

Cracks appeared when applying a high pulse number (> 10%) for Fgp > 6 MWm~2s0%
or when increasing the power density above a certain limit at a given pulse number.
At Ty =~ 200 °C the threshold strongly depended on the pulse intensity: between
10? and 10° pulses for Fyp = 12 MWm2s%? (if the data from [62] are taken into ac-
count using the same heat flux factor), between 10* and 10* for Fp = 9 MWm25%
and between 2.5 - 10° and 10° for Fyp = 6 MWm 25 (fig. 5.11). Experiments
at Teus & 400°C (fig. 5.12) show a lower threshold at Fgp = 6 MWm~2s%% (10% —
10°) but a higher threshold for Fgp = 9 MWm~25%° (10* — 10°). This behaviour is
discussed further down, but may also be explained by a statistical deviation. The
sample in question (09051E4) is the most severely roughened of all non-cracked
samples (fig. 5.16). For the highest base temperature Tg,¢ = 700 °C the thresholds
are about one order of magnitude lower than for Ty, &~ 200 °C.

| FZJ-1EK 2011 EHT=20.00kv  Detector=QBSD WD= 25mm —

L

Figure 5.20: SEM image of the surface of sample 09101E3 showing
the “small cracks” phase. The sample was loaded with 10? pulses of Fyp =
9 MWm 25" at Tgus ~ 700°C. The cracks were straight or often also star—
shaped with three branches. They were not connected with each other. A BSE
image was chosen here because it provides a better contrast than a SE image.

In case of Tyt & 200 °C cracks typically appeared more sudden than at elevated
temperatures, because the material appeared to be still fully or partially in a brittle
state. This and the crack depth data discussed below indicated a fast crack develop-
ment once they appeared, although the appearance of cracks may need > 10° pulses
like in the case of Fyr = 6 MWm™2s%3. Hence a “small cracks” phase may exist but
was not observed for Ty, & 200 °C. Earlier experiments with the same material [62]
showed that 150 — 200°C is a critical temperature, above which the material be-
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5 RESULTS AND DISCUSSION

haved more ductile. An example for the “small cracks” phase is shown in figure 5.20.
The cracks were small straight lines or had a star shape with three branches. These
star shaped cracks indicate that the cracks often start at the intersection of the
boundaries of three grains.
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Figure 5.21: Average crack depths for different loading conditions. Typi-
cally 3 — 9 cracks were visible in a cross section.

Brittleness also explained the evolution of crack depth (fig. 5.21): It did not
increase from 10* to 10° pulses at Tgy¢ ~ 200 °C, but did so for the exact same loading
conditions at Tyt &~ 700 °C. The crack depths at Ty, ~ 700 °C were significantly
lower for 10* pulses and the first small and shallow cracks appeared already after
10% pulses. This suggests a development (as it was expected for fatigue cracks in a
more ductile regime) instead of a sudden cracking. Investigations with lower pulse
number (< 1000) and higher intensity showed that this development ends when the
crack depth provided the necessary amount of stress relief [51]. Therefore, pulses of
higher intensity created higher average crack depths. The pulse intensity determined
(together with material properties) the penetration depth of the transient load and
the stress amplitude. This seems to be the case here as well: The crack depth
development stopped (at least for the Tgur & 200 °C case) and higher intensities led
to higher crack depth. For the higher temperature case Tyy¢ &~ 700°C the same
crack depth is achieved after 10° pulses. However, only tests at 10° pulses could
confirm if the development stops at this depth.

The average crack depth of the sample 061E6 remained as low as ~ 90 nm, while
samples loaded with 10° pulses of Fyp = 9 MWm™2s%° and Fyp = 12 MWm™2s%°
achieved average crack depths of ~ 200 pm. The only exception (09051E5) can be
explained by an extremely deep crack (~ 300 pm) found in the sample centre. This
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5.2 TUNGSTEN

crack released a major fraction of the occurring stresses and thus prevented other
cracks from growing. The growth of this crack was most probably facilitated by two
defects in the material (cavities) it was found to cross.
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Figure 5.22: SEM images of samples loaded with 10° (a), 10* (b)
and 10° (c) pulses of Fgr = 12 MWm™2s%® at Tgus ~ 700°C. The
material showed different stages of degradation: (a) small unconnected cracks,
often star shaped; (b) well-marked crack network; (c) crack network + melting;
the detail (d) shows the deformed surface with melt droplets, particularly on
protruding parts.

In general, cracks occurred at lower pulse numbers in case of higher base temper-
atures (103 pulses with Fgp = 9 MWm=2s%?: roughening at Ty, &~ 200 °C, cracking
at Tgut ~ 700 °C). An exception was the test with 10* pulses at Fyp = 9 MWm 2%,
which showed cracking at Tgu,¢ &~ 200°C and Tyy,¢ ~ 700°C but only roughening
at Ty &~ 400°C. This is explained by the ductility of the material which was high
enough at 400 °C to prevent cracking up to this pulse number. At 200 °C the brittle-
ness led to earlier cracking, while at 700 °C the lower yield stress caused a stronger
deformation, hence higher fatigue damage and an early appearance of fatigue cracks.

Continued cycling after crack formation resulted in erosion of crack edges at
Tsuwrr &~ 200 °C and surface deformation at high temperatures. Erosion was observed
on the sample 061E6 (fig. 5.23), in contrast to the samples loaded with 10* — 10°
pulses of higher intensities. These showed a typical crack network with keen crack
edges like on sample 091E5 (fig. 5.24). However, ripples were already visible at the
crack edges of 091E5 as well. It can be deduced that the erosion was caused by
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mechanical fatigue of prominent crack edges that repeatedly rubbed against each
other at every pulse due to cyclic thermal expansion. This mechanism caused an

acc

umulation of plastic deformation at the crack edges, which also explained the

particular roughening around edges and the often observed increased height of crack
edges (relative to the inter—crack areas), so called lifting. Such mechanisms were
also observed in [58,59].

FZJ-IEF2010  EHT=2000k/ Detector=QBSD WD= 25mm FZJ-IEF2010  EHT=2000k/ Detector=SE1  WD= 25mm oy

Figure 5.23: SEM images of the sample loaded with 10° pulses of
Far = 6 MWm2s%° at T, ~ 200°C (061E6). The overview on the
left shows a well-marked crack network. The same loading conditions resulted
only in a roughened surface after 2.5-10° pulses. Parts of the surface appear
rough while others seem to be unchanged (probably “weak” and “strong” grain
orientations, section 5.2.2). The detail on the right indicates the danger of
erosion. Cyclic friction at the crack edges loosened small surface fragments.

FZJ-IEK2011  EHT=2000KV = FZJ-1EK2011  EWT=2000kV Detector=SE1  WD= 26mm oy

Figure 5.24: SEM images of the sample loaded with 10° pulses of

Far = 9 MWm2s%5 at Tgys &~ 200 °C (091E5). The overview on the left
shows a well-marked crack network and a localised roughening typical for the
Tewtr = 200°C tests. The crack edges are keen, not as eroded as for sample
061EG6 (figure above). Increased roughening around the crack edges indicates
the beginning fatigue due to friction.

At higher base temperatures the result is a bit different: the increased ductility
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led to highly plastically deformed surfaces and (at Tgus = 700 °C) to an increase in
crack width. Although the crack width could not be determined precisely because
the edges were not clearly defined any more (fig. 5.22d) an approximate width in-
crease by more than one order of magnitude could be estimated (from an average
We &~ 2 pm up to Wy, = 50 pm for the samples 091E5 (Tqu¢ &~ 200°C, fig. 5.24)
and 09101E5 (Tguwr & 700 °C, similar to fig. 5.22d), respectively).

For the most intense heat loads (Fyp = 9 MWm 2% and Fyp = 12 MWm2s%9)
at Tgur &~ 700°C some melt droplets were observed (fig. 5.22d). These originated

from protruding parts which had deteriorating thermal contact, overheated and

partially melted. An estimation of the amount of molten material from the SEM
pictures resulted in a value of 2 — 3 gm~2.

5.2.4 Recrystallisation & Recovery

Recrystallisation was found in surface near regions (20 — 300 pm depth) and around
cracks (fig. 5.25). One sample even showed traces of recrystallisation close to the
surface (depth &~ 20 pm) and near to a crack at Ty = 200 °C. Maximum temper-
atures reached during experiments were Tpeax ~ 1400 °C, but only for a duration of
~ 1 ms per pulse (section 5.1). This adds up to 100 seconds for a sample loaded
with 10° pulses. Temperatures high enough to recrystallise the material are in the
order of > 1300 °C (typical recommendation from the manufacturer: 1350 °C for one
hour) [16,57,71,72]. This recrystallisation could have occurred due to locally dimin-
ished effective heat conductivity because of the formed cracks that act as thermal
barriers. Most probably the necessary temperature is only exceeded for a short time
after a transient pulse, meaning the observed phenomena were accumulating during
the pulses. Furthermore the induced plastic deformation lowered the recrystallisa-
tion temperature.

Lines visible within grains in etched cross section images indicated the appear-
ance of sub-grain boundaries, probably developed by polygonisation. This phe-
nomenon could not be assigned to the influence of the heat load with certainty,
because it was also found in the material (although scarce) before the experiment
(the material was forged and subsequently stress relieved in the production process).
However, the recrystallisation and polygonisation around cracks fit well to the ex-
tremely deformed zone in front of the crack tip and around the crack that is typical
for fatigue cracks. The recrystallised grains had different sizes. Some appeared to be
remainders of the original grain structure, others were in the process of falling apart
into smaller ones and still others were completely new grains, already subjected to
grain growth (fig. 5.25). The overall picture suggested a highly dynamic process
where the local strain-temperature situation determined the amount of recovery,
polygonisation, dynamic recrystallisation and even grain growth and melting. In
comparison, the same loading conditions at Tyt &~ 200°C (fig. 5.26) did not show
any of these effects.
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Figure 5.25: Cross section image of sample 09101E5 loaded with 10°
pulses of Fyp = 9 MWm™2s%% at Ty, &~ 700 °C. Recrystallisation and sub-grain
boundary appearance are visible at the top and around the crack. The original
grain structure was preserved at higher depths (bottom).

50 ym

Figure 5.26: Cross section image of sample 091E5 loaded with 10° pulses
of Fyr = 9 MWm 25" at Tyt &~ 200°C. These conditions are the same as in
figure 5.25, just at Ty, &~ 200 °C instead of Ty & 700 °C.
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5.3 CFC

Experiments with CFC of type NB31 and NB41 showed a much higher damage
threshold compared to tungsten. The results are shown in figure 5.27. First exper-
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Figure 5.27: Surface condition of CFC samples tested at a surface tem-
perature of ~ 500 °C (10 MWm~2 SSHL). A surface modification has only been
observed for the highest energy density and number of cycles.

iments with NB31 where planned for a heat flux factor of 9 MWm™2s%5, because
earlier experiments with the plasma facility QSPA-T (using NB31 as well) suggested
a PAN fibre erosion of ~ 0.01 pm/pulse at the corresponding energy density [73].
This would have led to a crater of < 1 mm depth after 100000 pulses. This value
holds true for PAN fibre erosion, however, a shielding by the more resistant pitch
fibres could result in a lower erosion depth.

In contrast to this expectation at 10* pulses of Fyr = 15 MWm 2% still no
surface modification (change in reflectivity/colour) was observed. A surface modifi-
cation (darkened area) at 10° pulses was found, but without any significant erosion
(fig. 5.28).

At the corresponding energy density of 0.33 MJm~2 PAN fibre erosion in the
order of the whole sample height was expected for 10° pulses, again considering [73].
Particle effects, like physical and chemical sputtering, seem to dominate CFC erosion
under these conditions [20]. A threshold value for brittle destruction of 2.5 GWm 2
for 2 ms pulses (this corresponds to Fyp = 112 MWm~25%?) is known from electron
beam experiments for the same CFC type in JUDITH 1 at low pulse numbers [40].
This means that the remaining erosion mechanisms were negligible and no long term
fatigue mechanism as for tungsten occurred in CFC up to Fyp = 15 MWm2s%5,
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Figure 5.28: Surface image of the CFC sample loaded with 10° pulses of
Fyr = 15 MWm 282 at Tg,r ~ 500 °C.
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Based on the calculations, measurements and tests done for and with the electron
beam test facility JUDITH 2 it can be concluded that a working test procedure for
high pulse number transients could be developed. While the pulse number mainly
depends on the time available for testing, the absorbed pulse power density is a more
difficult issue. For tungsten up to Laus = 0.55 GWm™~2 was achieved and for carbon
based materials or beryllium about twice as high values are possible due to the higher
electron absorption. The loaded area is of the size of 3 — 12 mm? and would be even
smaller for higher power densities. The crucial parameters for the intensity are
machine power and beam diameter. A beam diameter measurement campaign done
in the course of this work revealed some of the available diameter values (depending
on power, acceleration voltage, vacuum quality, etc.). Increasing this database could
provide parameter ranges with higher beam power densities. However, a strong
increase should not be expected as higher machine power is accompanied by larger
beam diameter with overall lower beam power density.

The flexible beam guidance system led to the development of tests loading sam-
ples not only with transients but also additionally and quasi simultaneously with a
SSHL. This allows, in combination with previous FEM simulations, to adjust the
base surface temperature. Material properties are strongly dependent on tempera-
ture, hence the response of the material to thermal loads differs with temperature.
This was confirmed for the tested tungsten material by the results of this work. A
technique to adjust the temperature is therefore of great value, also for application
relevant test conditions, because different load intensities (and hence temperatures)
are expected for different parts of the divertor in ITER and DEMO.

The observed degradation states of the tested tungsten grade show a development
with number of pulses. Clearly every single pulse causes a small change in the
material: the loaded area heats up and expands in contrast to the surrounding
cooler material. This leads to compressive stresses that, in case of exceeding the
yield strength, cause irreversible plastic deformation. This deformation could be
observed, as well as its increase at higher temperature, at which the yield strength
of tungsten decreases [16,57]. However, at low temperature and with weak transients
the yield strength is not necessarily exceeded and cracks occur after a great number
of cyclic loads analogous to mechanical fatigue.

In either case deformation/defect concentration is accumulated during cycling
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and leads to increasing surface roughness and defect concentration after the cool
down phase of a pulse. That finally results in first cracks starting preferentially at
mechanically weak intersections of two or three grain boundaries. For samples of the
category “small cracks” star-shaped cracks with three branches were often observed,
which correspond to a three boundary intersection (fig. 5.20). In the case of low
surface temperatures the degradation state “small cracks” was not observed. Most
probably this phase is very short because cracks connect to a network faster at low
temperatures. This is supported by the crack growth analyses: the cracks form more
sudden and/or propagate very fast due to the higher brittleness of tungsten at lower
temperatures. The pulse intensity (Fup) roughly determines the final crack depth
for a given material (also found for low cycle tests, [74]), while the base temperature
determines the crack propagation process: Brittle and fast for low temperatures (ap-
prox. 200°C for the examined material), ductile and slow for higher temperatures.
However, cracks occur faster for hotter surfaces because of the higher ductility and
hence higher fatigue due to plastic deformation. At high pulse numbers two dif-
ferent additional degradation mechanisms are possible. First (at low temperature)
the friction at crack edges can cause erosion. Second (at higher temperatures) high
plastic deformation leads to isolated, protruding parts which can melt. Both, melt
droplets and dust created by erosion, pose a great risk for a fusion reactor: for the
operation due to possible plasma contamination and for safety, for example due to
the problems connected with the removal of highly radioactive dust that entered the
vacuum pumping systems.

The resistance of CFC against thermal loads is known to be greater than that of
tungsten. It was shown that this is also valid for pulse numbers of up to 105. The
temperatures during the tests where not high enough to introduce sufficient stresses
to attain a degradation of the material. It is, however, notable that no long term
fatigue mechanism was observed. Despite these findings the influence of neutrons
in a reactor is expected to result in a loss of this superior resistance anyway [43].
Recent developments in the decisions for the ITER divertor indicate that CFC will
not be used at all.

Regarding the use of tungsten as PFM in the ITER divertor the results show that
a high number of transients is not tolerable even if they are mitigated to, for example,
half the power density of natural type I ELMs. Either they have to be suppressed
completely or the mitigation has to be very strong in order to avoid dust formation
or melting. It should be noted that the damage threshold of 0.14 — 0.27 GWm™2
for 0.5 ms pulses only gives an upper limit. Although this threshold was valid for
all tested base temperatures it is unconfirmed whether this holds true for higher
temperatures, especially if they lead to extensive recrystallisation. Additionally,
the grains of the material tested in this work were oriented parallel to the surface,
meaning the material was comparatively strong in surface plane direction. The ITER
reference material has grains oriented perpendicular to the surface to minimise the
risk of parallel cracks that act as thermal barriers. It has already been shown that
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a perpendicular grain orientation as well as recrystallised material have a lower
damage threshold for low pulse numbers [51]. Finally, a decrease of this threshold
should also be expected when including the influence of hydrogen (plasma) and
neutrons.
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B Final mock up design dimen-
sions

isometric view top view

pool depth: 0.8

74.6

front view

12

side view -
;

Figure B.1: Schematic drawing of the final mock up geometry. All
dimensions are given in millimetres.
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C Beam profile measurement re-
sults

The results of the beam profile measurements performed with the method described
in section 3.5 are listed hereafter. A tungsten wire of 1.6 mm thickness was used
during all measurements with acceleration voltage of 50 kV; during 40 kV tests
a 0.5 mm thick tungsten wire was used. However, tests with different thicknesses
< 1.6 mm did not show significant differences in results. The pressure in the cathode
chamber and in the intermediate chamber were kept constant at peathode = 4.2 -
107% mbar and piptermediate = 2.7 - 107° mbar respectively. Magnetic lens current
for lens 1 was always at 100 %, as this showed good results with respect to strong
focussing (also in [1]) and to reduce parameter space. The measured signal was
analysed with the Origin software (Gauss fits). Measurements were repeated at least
ten times and an average FWHM was calculated as well as the standard deviation
(called Apwnn here). The resulting incident power density is also given.

C.1 Results for pehamber = 3.5 - 107* mbar

Table C.1: Beam measurement results for P = 38 kW machine power at
U, = 50 kV and a main chamber pressure of pepamper = 3.5 - 1074 mbar.

L2 (%) FWHM (mm) Apwmv (mm) L (MWm™2) AL (MWm™?)

36 5.03 0.32 1324 167

38 5.42 0.28 1142 119

40 5.97 0.28 1079 109

42 5.99 0.18 933 95

44 7.09 0.33 668 62
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C BEAM PROFILE MEASUREMENT RESULTS

Table C.2: Beam measurement results for P = 40 kW machine power at
U, = 50 kV and a main chamber pressure of pehamber = 3.5 - 10~% mbar.

L2 (%) FWHM (mm) Apwpym (mm) L (MWm=2) AL (MWm—2)

37 5.54 0.42 1152 176

39 5.67 0.22 1099 84

41 6.16 0.36 930 109

Table C.3: Beam measurement results for P = 43 kW machine power at
U, = 50 kV and a main chamber pressure of pehamper = 3.5 - 1074 mbar.

L2 (%) FWHM (mm) Apwgy (mm) L (MWm=2) AL (MWm2)

34 5.69 0.22 1172 92

36 5.94 0.20 1076 73

38 5.95 0.29 1071 105

40 6.52 0.33 893 90

42 7.24 0.24 725 48

44 8.26 0.40 556 53
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C.1 RESULTS FOR Pcpamper = 3.5 107 MBAR

Table C.4: Beam measurement results for P = 43 kW machine power at
U, = 40 kV and a main chamber pressure of pehamber = 3.5 - 10™% mbar.

L2 (%) FWHM (mm) Apwpu (mm) L (MWm=2) AL (MWm™2)

24 7.86 0.40 614 63

26 7.55 0.26 666 45

28 7.71 0.20 638 33

30 7.41 0.28 691 ]

32 7.64 0.11 651 19

34 8.36 0.18 542 24

36 9.74 0.38 400 31

38 11.11 0.26 308 14

40 11.88 0.24 269 11
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C BEAM PROFILE MEASUREMENT RESULTS

C.2 Results for pehamber = 2.1 - 107* mbar

Table C.5: Beam measurement results for P = 38 kW machine power at
2 = 50 kV and a main chamber pressure of pepamper = 2.1 - 10™* mbar.

L2 (%) FWHM (mm) Apwpym (mm) L (MWm=2) AL (MWm—2)

36 4.60 0.10 1587 69

38 4.71 0.21 1510 136

40 5.02 0.37 1333 195

42 5.35 0.14 1172 62

44 6.89 0.50 707 104

Table C.6: Beam measurement results for P = 40 kW machine power at
U, = 50 kV and a main chamber pressure of pepamper = 2.1 - 10™* mbar.

L2 (%) FWHM (mm) Apwgv (mm) L (MWm=2) AL (MWm=2)

37 5.03 0.17 1395 94

39 5.11 0.12 1354 64

41 5.68 0.23 1093 88

43 6.99 0.34 722 71
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C.3 RESULTS FOR Pcpamper = 1.3 - 107 MBAR

Table C.7: Beam measurement results for P = 43 kW machine power at
U, = 50 kV and a main chamber pressure of pepamper = 2.1 - 1074 mbar.

L2 (%) FWHM (mm) Apwpu (mm) L (MWm™2) AL (MWm™?)

35 5.06 0.25 1484 147

37 5.32 0.24 1341 119

39 5.58 0.16 1217 70

41 6.49 0.39 900 108

C.3 Results for pehamber = 1.3 - 107* mbar

Table C.8: Beam measurement results for P = 38 kW machine power at
U, = 50 kV and a main chamber pressure of pehamper = 1.3 - 107% mbar.

L2 (%) FWHM (mm) Apwpv (mm) L (MWm=2) AL (MWm2)

36 5.97 0.61 942 193

38 4.85 0.49 1424 289

40 4.24 0.62 1863 542

42 4.72 0.33 1507 208

44 6.78 0.62 731 133
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C BEAM PROFILE MEASUREMENT RESULTS

Table C.9: Beam measurement results for P = 40 kW machine power at
U, = 50 kV and a main chamber pressure of pehamper = 1.3 - 10™% mbar.

L2 (%) FWHM (mm) Apwpym (mm) L (MWm=2) AL (MWm—2)

37 5.05 0.67 1387 369

39 4.27 0.53 1940 479

41 5.30 0.43 1255 201

Table C.10: Beam measurement results for P = 43 kW machine power at
U, = 50 kV and a main chamber pressure of pehamper = 1.3 - 1074 mbar.

L2 (%) FWHM (mm) Apwmv (mm) L (MWm=2) AL (MWm™2)

35 5.39 0.53 1304 257

37 3.93 0.53 2459 669

39 4.96 0.48 1540 301

41 6.96 0.56 782 126
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