000127486 001__ 127486 000127486 005__ 20210129210949.0 000127486 0247_ $$2doi$$a10.1140/epjd/e2012-30253-7 000127486 0247_ $$2ISSN$$a1434-6079 000127486 0247_ $$2ISSN$$a1434-6060 000127486 0247_ $$2WOS$$aWOS:000312439000018 000127486 037__ $$aFZJ-2012-00449 000127486 082__ $$a530 000127486 1001_ $$0P:(DE-HGF)0$$aKhattak, F. Y.$$b0 000127486 245__ $$aFast electron penetration in laser-irradiated solids 000127486 260__ $$aBerlin$$bSpringer$$c2012 000127486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1389618128_2020 000127486 3367_ $$2DataCite$$aOutput Types/Journal article 000127486 3367_ $$00$$2EndNote$$aJournal Article 000127486 3367_ $$2BibTeX$$aARTICLE 000127486 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000127486 3367_ $$2DRIVER$$aarticle 000127486 520__ $$aIn this letter we present data comparing the yield of Cu K-α radiation for foils of differing thickness irradiated with a Ti:Sapphire laser generating 40 fs pulses at 800 nm and incident at 45°. At tight focus, the yields for all thicknesses are similar, whilst away from best focus there are clear differences. We discuss the origin of these similarities and differences in terms of the penetration of fast electrons into the foil and the possible importance of refluxing of fast electrons as they reach the non-irradiated side of the foil. 000127486 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0 000127486 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de 000127486 7001_ $$0P:(DE-HGF)0$$aGarcia Saiz, E.$$b1 000127486 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b2$$ufzj 000127486 7001_ $$0P:(DE-Juel1)132156$$aKarmakar, Anupam$$b3 000127486 7001_ $$0P:(DE-HGF)0$$aDzelzainis, T. W. J.$$b4 000127486 7001_ $$0P:(DE-HGF)0$$aLewis, C. L. S.$$b5 000127486 7001_ $$0P:(DE-HGF)0$$aRobinson, A. P. L.$$b6 000127486 7001_ $$0P:(DE-HGF)0$$aZepf, M.$$b7 000127486 7001_ $$0P:(DE-HGF)0$$aRiley, D.$$b8$$eCorresponding author 000127486 773__ $$0PERI:(DE-600)1459071-2$$a10.1140/epjd/e2012-30253-7$$n11$$p298$$tThe @European physical journal / D$$v66$$y2012 000127486 909__ $$ooai:juser.fz-juelich.de:127486$$pVDB 000127486 909CO $$ooai:juser.fz-juelich.de:127486$$pVDB 000127486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000127486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132156$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000127486 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000127486 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0 000127486 9141_ $$y2012 000127486 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000127486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000127486 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000127486 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000127486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000127486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000127486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000127486 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000127486 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000127486 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000127486 980__ $$ajournal 000127486 980__ $$aVDB 000127486 980__ $$aUNRESTRICTED 000127486 980__ $$aI:(DE-Juel1)JSC-20090406