000127486 001__ 127486
000127486 005__ 20210129210949.0
000127486 0247_ $$2doi$$a10.1140/epjd/e2012-30253-7
000127486 0247_ $$2ISSN$$a1434-6079
000127486 0247_ $$2ISSN$$a1434-6060
000127486 0247_ $$2WOS$$aWOS:000312439000018
000127486 037__ $$aFZJ-2012-00449
000127486 082__ $$a530
000127486 1001_ $$0P:(DE-HGF)0$$aKhattak, F. Y.$$b0
000127486 245__ $$aFast electron penetration in laser-irradiated solids
000127486 260__ $$aBerlin$$bSpringer$$c2012
000127486 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1389618128_2020
000127486 3367_ $$2DataCite$$aOutput Types/Journal article
000127486 3367_ $$00$$2EndNote$$aJournal Article
000127486 3367_ $$2BibTeX$$aARTICLE
000127486 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000127486 3367_ $$2DRIVER$$aarticle
000127486 520__ $$aIn this letter we present data comparing the yield of Cu K-α radiation for foils of differing thickness irradiated with a Ti:Sapphire laser generating 40 fs pulses at 800 nm and incident at 45°. At tight focus, the yields for all thicknesses are similar, whilst away from best focus there are clear differences. We discuss the origin of these similarities and differences in terms of the penetration of fast electrons into the foil and the possible importance of refluxing of fast electrons as they reach the non-irradiated side of the foil.
000127486 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000127486 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000127486 7001_ $$0P:(DE-HGF)0$$aGarcia Saiz, E.$$b1
000127486 7001_ $$0P:(DE-Juel1)132115$$aGibbon, Paul$$b2$$ufzj
000127486 7001_ $$0P:(DE-Juel1)132156$$aKarmakar, Anupam$$b3
000127486 7001_ $$0P:(DE-HGF)0$$aDzelzainis, T. W. J.$$b4
000127486 7001_ $$0P:(DE-HGF)0$$aLewis, C. L. S.$$b5
000127486 7001_ $$0P:(DE-HGF)0$$aRobinson, A. P. L.$$b6
000127486 7001_ $$0P:(DE-HGF)0$$aZepf, M.$$b7
000127486 7001_ $$0P:(DE-HGF)0$$aRiley, D.$$b8$$eCorresponding author
000127486 773__ $$0PERI:(DE-600)1459071-2$$a10.1140/epjd/e2012-30253-7$$n11$$p298$$tThe @European physical journal / D$$v66$$y2012
000127486 909__ $$ooai:juser.fz-juelich.de:127486$$pVDB
000127486 909CO $$ooai:juser.fz-juelich.de:127486$$pVDB
000127486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132115$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000127486 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132156$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000127486 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000127486 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000127486 9141_ $$y2012
000127486 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000127486 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000127486 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000127486 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000127486 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000127486 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000127486 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000127486 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000127486 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000127486 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000127486 980__ $$ajournal
000127486 980__ $$aVDB
000127486 980__ $$aUNRESTRICTED
000127486 980__ $$aI:(DE-Juel1)JSC-20090406